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Abstract

We present a system that demonstrates how the composi-
tional structure of events, in concert with the compositional
structure of language, can interplay with the underlying
focusing mechanisms in video action recognition, thereby
providing a medium, not only for top-down and bottom-up
integration, but also for multi-modal integration between
vision and language. We show how the roles played by par-
ticipants (nouns), their characteristics (adjectives), the ac-
tions performed (verbs), the manner of such actions (ad-
verbs), and changing spatial relations between participants
(prepositions) in the form of whole sentential descriptions
mediated by a grammar, guides the activity-recognition pro-
cess. Further, the utility and expressiveness of our frame-
work is demonstrated by performing three separate tasks
in the domain of multi-activity videos: sentence-guided fo-
cus of attention, generation of sentential descriptions of
video, and query-based video search, simply by leveraging
the framework in different manners.

1. Introduction
The ability to describe the observed world in natural lan-

guage is a quintessential component of human intelligence.
A particular feature of this ability is the use of rich sen-
tences, involving the composition of multiple nouns, adjec-
tives, verbs, adverbs, and prepositions, to describe not just
static objects and scenes, but also events that unfold over
time. Furthermore, this ability appears to be learned by vir-
tually all children. The deep semantic information learned
is multi-purpose: it supports comprehension, generation,
and inference. In this work, we investigate the intuition,
and the precise means and mechanisms that will enable us
to support such ability in the domain of activity recognition
in multi-activity videos.

Suppose we wanted to recognize an occurrence of an
event described by the sentence The ball bounced, in a
video. Nominally, we would need to detect the ball and
its position in the field of view in each frame and determine
that the sequence of such detections satisfied the require-
ments of bounce. The sequence of such object detections
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and their corresponding positions over time constitutes a
track for that object. In this view, the semantics of an in-
transitive verb like bounce would be formulated as a unary
predicate over object tracks. Recognizing occurrences of
events described by sentences containing transitive verbs,
like The person approached the ball, would require detect-
ing and tracking two objects, the person and the ball con-
strained by a binary predicate.

In an ideal world, event recognition would proceed in a
purely feed-forward fashion: robust and unambiguous ob-
ject detection and tracking followed by application of the
semantic predicates on the recovered tracks. However, the
current state-of-the-art in computer vision is far from this
ideal. Object detection alone is highly unreliable. The best
current average-precision scores on PASCAL VOC hover
around 40%-50% [3]. As a result, object detectors suf-
fer from both false positives and false negatives. One way
around this is to use detection-based tracking [17], where
one biases the detector to overgenerate, alleviating the prob-
lem of false negatives, and uses a different mechanism to
select among the overgenerated detections to alleviate the
problem of false positives. One such mechanism selects de-
tections that are temporally coherent, i.e. the track motion
being consistent with optical flow. Barbu et al. [2] proposed
an alternate mechanism that selected detections for a track
that satisfied a unary predicate such as one would construct
for an intransitive verb like bounce. We significantly ex-
tend that approach, selecting detections for multiple tracks
that collectively satisfy a complex multi-argument predicate
representing the semantics of an entire sentence. That pred-
icate is constructed as a conjunction of predicates represent-
ing the semantics of individual words in that sentence. For
example, given the sentence The person to the left of the
chair approached the trash can, we construct a logical form.

PERSON(P ) ∧ TOTHELEFTOF(P,Q) ∧ CHAIR(Q)
∧ APPROACH(P,R) ∧ TRASHCAN(R)

Our tracker is able to simultaneously construct three
tracks P , Q, and R, selecting out detections for each, in an
optimal fashion that simultaneously optimizes a joint mea-
sure of detection score and temporal coherence while also
satisfying the above conjunction of predicates. We obtain
the aforementioned detections by employing a state-of-the-
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art object detector [5], where we train a model for each ob-
ject (e.g. person, chair, etc.), which when applied to an im-
age, produces axis-aligned bounding boxes with associated
scores indicating strength of detection.

We represent the semantics of lexical items like person,
to the left of, chair, approach, and trash can with predi-
cates over tracks like PERSON(P ), TOTHELEFTOF(P,Q),
CHAIR(Q), APPROACH(P,R), and TRASHCAN(R). These
predicates are in turn represented as regular expressions (i.e.
finite state recognizers or FSMs) over features extracted
from the sequence of detection positions, shapes, and sizes
as well as their temporal derivatives. For example, the pred-
icate TOTHELEFTOF(P,Q) might be a single state FSM
where, on a frame-by-frame basis, the centers of the de-
tections for P are constrained to have a lower x-coordinate
than the centers of the detections forQ. The actual formula-
tion of the predicates (Table 2) is far more complex to deal
with noise and variance in real-world video. What is central
is that the semantics of all parts of speech, namely nouns,
adjectives, verbs, adverbs, and prepositions (both those that
describe spatial-relations and those that describe motion), is
uniformly represented by the same mechanism: predicates
over tracks formulated as finite state recognizers over fea-
tures extracted from the detections in those tracks.

We refer to this capacity as the Sentence Tracker, which
is a function S : (D,Φ) 7→ (τ, Z), that takes as input an
overgenerated set D of detections along with a complex
sentential predicate Φ and produces a score τ together with
a set Z of tracks that satisfy Φ while optimizing a linear
combination of detection scores and temporal coherence.
This can be used for three distinct purposes:
focus of attention One can apply the sentence tracker to

the same video D, that depicts multiple simultaneous
events taking place in the field of view with different
participants, with two different sentences Φ1 and Φ2.
In other words, one can compute (τ1, Z1) = S(D,Φ1)
and (τ2, Z2) = S(D,Φ2) to yield two different sets
of tracks Z1 and Z2 corresponding to the different sets
of participants in the different events described by Φ1

and Φ2. We demonstrate this in section 4.1.
generation One can take a video D as input and systemat-

ically search the space of all possible Φ that correspond
to sentences that can be generated by a context-free gram-
mar and find that sentence that corresponds to the Φ∗ for
which (τ∗, Z∗) = S(D,Φ∗) yields the maximal τ∗. This
can be used to generate a sentence that describes an input
video D. We demonstrate this in section 4.2.

retrieval One can take a collection D = {D1, . . . , Dn} of
videos (or a single long video chopped into short clips)
along with a sentential query Φ, compute (τi, Zi) =
S(Di,Φ) for each Di, and find the clip Di with maxi-
mal score τi. This can be used to perform sentence-based
video search. We demonstrate this in section 4.3.

However, we first present the two central algorithmic con-
tributions of this work. In section 2 we present the de-
tails of the sentence tracker, the mechanism for efficiently
constraining several parallel detection-based trackers, one
for each participant, with a conjunction of finite state rec-
ognizers. In section 3 we present lexical semantics for
a small vocabulary of 17 lexical items (5 nouns, 2 adjec-
tives, 4 verbs, 2 adverbs, 2 spatial-relation prepositions, and
2 motion prepositions) all formulated as finite state recog-
nizers over features extracted from detections produced by
an object detector, together with compositional semantics
that maps a sentence to a semantic formula Φ constructed
from these finite state recognizers where the object tracks
are assigned to arguments of these recognizers.
2. The Sentence Tracker

Barbu et al. [2] address the issue of selecting detec-
tions for a track that simultaneously satisfies a temporal-
coherence measure and a single predicate corresponding to
an intransitive verb such as bounce. Doing so constitutes the
integration of top-down high-level information, in the form
of an event model, with bottom-up low-level information in
the form of object detectors. We provide a short review of
the relevant material in that work to introduce notation and
provide the basis for our exposition of the sentence tracker.

max
j1,...,jT

T∑
t=1

f(btjt) +

T∑
t=2

g(bt−1jt−1 , b
t
jt) (1)

The first component is a detection-based tracker. For a given
video with T frames, let j be the index of a detection and btj
be a particular detection in frame t with score f(btj). A
sequence 〈j1, . . . , jT 〉 of detection indices, one for each
frame t, denotes a track comprising detections btjt . We seek
a track that maximizes a linear combination of aggregate
detection score, summing f(btj) over all frames, and a mea-
sure of temporal coherence, as formulated in Eq. 1. The
temporal coherence measure aggregates a local measure g
computed between pairs of adjacent frames, taken to be the
negative Euclidean distance between the center of btjt and
the forward-projected center of bt−1jt−1 computed with opti-
cal flow. Eq. 1 can be computed in polynomial time using
dynamic-programming with the Viterbi [15] algorithm. It
does so by formulating a lattice, whose rows are indexed
by j and whose columns are indexed by t, where the node
at row j and column t is the detection btj . Finding a track
thus reduces to finding a path through this lattice.

max
k1,...,kT

T∑
t=1

h(kt, bt̂t) +

T∑
t=2

a(kt−1, kt) (2)

The second component recognizes events with hidden
Markov models (HMMs), by finding a maximum a poste-
riori probability (MAP) estimate of an event model given
a track. This is computed as shown in Eq. 2, where kt de-
notes the state for frame t, h(k, b) denotes the log proba-
bility of generating a detection b conditioned on being in
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Figure 1. The cross-product lattice used by the sentence tracker,
consisting of L tracking lattices and W event-model lattices.

state k, a(k′, k) denotes the log probability of transitioning
from state k′ to k, and ̂t denotes the index of the detec-
tion produced by the tracker in frame t. This can also be
computed in polynomial time using the Viterbi algorithm.
Doing so induces a lattice, whose rows are indexed by k
and whose columns are indexed by t.

The two components, detection-based tracking and event
recognition, can be combined by combining the cost func-
tions from Eq. 1 and Eq. 2 to yield a unified cost function

max
j1,...,jT

k1,...,kT

T∑
t=1

f(btjt) +

T∑
t=2

g(bt−1jt−1 , b
t
jt)

+

T∑
t=1

h(kt, btjt) +

T∑
t=2

a(kt−1, kt)

that computes the joint MAP estimate of the best possible
track and the best possible state sequence. This is done
by replacing the ̂t in Eq. 2 with jt, allowing the joint
maximization over detection and state sequences. This too
can be computed in polynomial time with the Viterbi al-
gorithm, finding the optimal path through a cross-product
lattice where each node represents a detection paired with
an event-model state. This formulation combines a single
tracker lattice with a single event model, constraining the
detection-based tracker to find a track that is not only tem-
porally coherent but also satisfies the event model. This can
be used to select that ball track from a video that contains
multiple balls that exhibits the motion characteristics of an
intransitive verb such as bounce.

One would expect that encoding the semantics of a com-
plex sentence such as The person to the right of the chair
quickly carried the red object towards the trash can, which
involves nouns, adjectives, verbs, adverbs, and spatial-
relation and motion prepositions, would provide substan-
tially more mutual constraint on the collection of tracks for
the participants than a single intransitive verb would con-
strain a single track. We thus extend the approach described
above by incorporating a complex multi-argument predi-
cate that represents the semantics of an entire sentence in-

stead of one that only represents the semantics of a single
intransitive verb. This involves formulating the semantics
of other parts of speech, in addition to intransitive verbs,
also as HMMs. We then construct a large cross-product lat-
tice, illustrated in Fig. 1, to support L tracks and W words.
Each node in this cross-product lattice represents L detec-
tions and the states for W words. To support L tracks, we
subindex each detection index j as jl for track l. Similarly,
to support W words, we subindex each state index k as kw
for word w and the HMM parameters h and a for word w
as hw and aw. The argument-to-track mappings θ1w and θ2w
specify the tracks that fill arguments 1 and 2 (where neces-
sary) of word w respectively. We then seek a path through
this cross-product lattice that optimizes

max
j11 ,...,j

T
1

j1L,...,j
T
L

k1
1,...,k

T
1

k1
W ,...,kTW

L∑
l=1

T∑
t=1

f(btjtl
) +

T∑
t=2

g(bt−1
jt−1
l

, btjtl
)

+
W∑

w=1

T∑
t=1

hw(ktw, b
t
jt
θ1w

, btjt
θ2w

)

+

T∑
t=2

aw(kt−1w , ktw)

This can also be computed in polynomial time using the
Viterbi algorithm. This describes a method by which the
function S(D,Φ) 7→ (τ, Z), discussed earlier, can be com-
puted, where D is the collection of detections btj and Z is
the collection of tracks jtl .
3. Natural-Language Semantics

The sentence tracker uniformly represents the semantics
of words in all parts of speech, namely nouns, adjectives,
verbs, adverbs, and prepositions (both those that describe
spatial relations and those that describe motion), as HMMs.
Finite state recognizers (FSMs) are a special case of HMMs
where the transition matrices a and the output models h are
0/1. Here, we formulate the semantics of a small fragment
of English consisting of 17 lexical items (5 nouns, 2 adjec-
tives, 4 verbs, 2 adverbs, 2 spatial-relation prepositions, and
2 motion prepositions), by hand, as FSMs. We do so to fo-
cus on what once can do with this approach, namely take
sentences as input and focus the attention of a tracker, take
video as input and produce sentential descriptions as output,
and perform content-based video retrieval given a sentential
input query, as discussed in Section 4. It is particularly en-
lightening that the FSMs we use are perspicuous and clearly
encode pretheoretic human intuitions about the semantics
of these words. But nothing turns on the use of hand-
coded FSMs. Our framework, as described above, supports
HMMs. A companion submission describes a method by
which one can automatically learn such HMMs for the lex-
icon, grammar, and corpus discussed in this paper.

Nouns (e.g. person) may be represented by constructing
static FSMs over discrete features, such as detector class.
Adjectives (e.g. red, tall, and big) may be represented as



S→ NP VP
NP→ D [A] N [PP]

D→ an | the
A→ blue | red
N→ person | backpack | trash can | chair | object

PP→ P NP
P→ to the left of | to the right of

VP→ V NP [ADV] [PPM]
V→ picked up | put down | carried | approached

ADV→ quickly | slowly
PPM→ PM NP

PM→ towards | away from

(a)
to the left of = (agent patient) (referent)

to the right of = (agent patient) (referent)
picked up = (agent) (patient)
put down = (agent) (patient)

carried = (agent) (patient)
approached = (agent) (goal)

towards = (agent patient) (goal)
away from = (agent patient) (source)

other = (agent patient referent goal source)

(b)

1a. The backpack approached the trash can.
b. The chair approached the trash can.

2a. The red object approached the chair.
b. The blue object approached the chair.

3a. The person to the left of the trash can put down an object.
b. The person to the right of the trash can put down an object.

4a. The person put down the trash can.
b. The person put down the backpack.

5a. The person carried the red object.
b. The person carried the blue object.

6a. The person picked up an object to the left of the trash can.
b. The person picked up an object to the right of the trash can.

7a. The person picked up an object.
b. The person put down an object.

8a. The person picked up an object quickly.
b. The person picked up an object slowly.

9a. The person carried an object towards the trash can.
b. The person carried an object away from the trash can.

10. The backpack approached the chair.
11. The red object approached the trash can.
12. The person put down the chair.

(c)
Table 1. (a) The grammar for our lexicon of 19 lexical entries (2 determiners, 2 adjectives, 5 nouns, 2 spatial relations, 4 verbs, 2 adverbs,
and 2 motion prepositions). Note that the grammar allows for infinite recursion in the noun phrase. (b) The theta grid, specifying the
number of arguments and roles such arguments refer to. (c) A selection of sentences drawn from the grammar based on which we collected
multiple videos for our corpus.

static FSMs that describe select properties of the detections
for a single participant, such as color, shape, or size, inde-
pendent of other features of the overall event. Intransitive
verbs (e.g. bounce) may be represented as FSMs that de-
scribe the changing motion characteristics of a single par-
ticipant, such as moving downward followed by moving up-
ward. Transitive verbs (e.g. approach) may be represented
as FSMs that describe the changing relative motion char-
acteristics of two participants, such as moving closer. Ad-
verbs (e.g. slowly and quickly) may be represented by FSMs
that describe the velocity of a single participant, indepen-
dent of the direction of motion. Spatial-relation preposi-
tions (e.g. to the left of ) may be represented as static FSMs
that describe the relative position of two participants. Mo-
tion prepositions (e.g. towards and away from) may be rep-
resented as FSMs that describe the changing relative posi-
tion of two participants. As is often the case, even sim-
ple static properties, such as detector class, object color,
shape, and size, spatial relations, and direction of motion,
might hold only for a portion of an event. We handle such
temporal uncertainty by incorporating garbage states into
the FSMs that always accept and do not affect the scores
computed. This also allows for alignment between mul-
tiple words in a temporal interval during a longer aggre-
gate event. We formulate the FSMs for specifying the word
meanings as regular expressions over predicates computed
from detections. The particular set of regular expressions
and associated predicates that are used in the experiments
are given in Table 2. The predicates are formulated around
a number of primitive functions. The function avgFlow(b)
computes a vector that represents the average optical flow

inside the detection b. The functions x(b), model(b), and
hue(b) return the x-coordinate of the center of b, its object
class, and the average hue of the pixels inside b respectively.
The function fwdProj(b) displaces b by the average optical
flow inside b. The functions ∠ and angleSep determine the
angular component of a given vector and angular distance
between two angular arguments respectively. The function
normal computes a normal unit vector for a given vector.
The argument v to NOJITTER denotes a specified direction
represented as a 2D unit vector in that direction. Regular
expressions are formulated around predicates as atoms. A
given regular expression must be formed solely from out-
put models of the same arity and denotes an FSM with a
−∞/0 transition matrix. We use a new regular-expression

operator, R[n,] 4= (R [TRUE]){n,} to indicate that R must
be repeated at least n times but can optionally have a sin-
gle frame of noise between each repetition. This allows for
some flexibility in the models.

A sentence may describe an activity involving multiple
tracks, where different (collections of) tracks fill the argu-
ments of different words. This gives rise to the requirement
of compositional semantics: dealing with the mappings
from arguments to tracks. Given a sentence, say The person
to the right of the chair picked up the backpack, argument-
to-track assignment is a function T (Λ,Γ,Ψ) 7→ (Φ), that
takes, as input, a sentence Λ and a grammar Γ, along with a
specification of the argument arity and role types Ψ for the
words in the lexicon and produces a formula Φ that spec-
ifies which tracks fill which arguments of which predicate
instances for the words in the sentence. Such a function,
applied to our example sentence with the grammar Γ as



Constants Simple Predicates Complex Predicates

XBOUNDARY
4
= 300PX

NEXTTO
4
= 50PX

∆STATIC
4
= 6PX

∆JUMP
4
= 30PX

∆QUICK
4
= 80PX

∆SLOW
4
= 30PX

∆CLOSING
4
= 10PX

∆DIRECTION
4
= 30◦

∆HUE
4
= 30◦

NOJITTER(b, v)
4
= ‖avgFlow(b) · v‖ ≤ ∆JUMP

ALIKE(b1, b2)
4
= model(b1) = model(b2)

FAR(b1, b2)
4
= |x(b1)− x(b2)| ≥ XBOUNDARY

CLOSE(b1, b2)
4
= |x(b1)− x(b2)| < XBOUNDARY

LEFT(b1, b2)
4
= 0 < x(b2)− x(b1) ≤ NEXTTO

RIGHT(b1, b2)
4
= 0 < x(b1)− x(b2) ≤ NEXTTO

HASCOLOUR(b, hue)
4
= angleSep(hue(b), hue) ≤ ∆HUE

STATIONARY(b)
4
= ‖avgFlow(b)‖ ≤ ∆STATIC

QUICK(b)
4
= ‖avgFlow(b)‖ ≥ ∆QUICK

SLOW(b)
4
= ‖avgFlow(b)‖ ≤ ∆SLOW

ISPERSON(b)
4
= model(b) = person

ISBACKPACK(b)
4
= model(b) = backpack

ISTRASHCAN(b)
4
= model(b) = trashcan

ISCHAIR(b)
4
= model(b) = chair

ISBLUE(b)
4
= HASCOLOUR(b, 225◦)

ISRED(b)
4
= HASCOLOUR(b, 0◦)

STATIONARYCLOSE(b1, b2)
4
= STATIONARY(b1) ∧ STATIONARY(b2) ∧ ¬ALIKE(b1, b2) ∧ CLOSE(b1, b2)

STATIONARYFAR(b1, b2)
4
= STATIONARY(b1) ∧ STATIONARY(b2) ∧ ¬ALIKE(b1, b2) ∧ FAR(b1, b2)

CLOSER(b1, b2)
4
= |x(b1)− x(b2)| > |x(fwdProj(b1))− x(b2)|+ ∆CLOSING

FARTHER(b1, b2)
4
= |x(b1)− x(b2)| < |x(fwdProj(b1))− x(b2)|+ ∆CLOSING

MOVECLOSER(b1, b2)
4
= NOJITTER(b1, (0, 1)) ∧ NOJITTER(b2, (0, 1)) ∧ CLOSER(b1, b2)

MOVEFARTHER(b1, b2)
4
= NOJITTER(b1, (0, 1)) ∧ NOJITTER(b2, (0, 1)) ∧ FARTHER(b1, b2)

ALONGDIR(b, v)
4
= angleSep(∠avgFlow(b),∠v) < ∆DIRECTION ∧ ¬STATIONARY(b)

MOVINGDIR(b, v)
4
= ALONGDIR(b, v) ∧ NOJITTER(b, normal(v))

APPROACHING(b1, b2)
4
= ¬ALIKE(b1, b2) ∧ STATIONARY(b2) ∧ MOVECLOSER(b1, b2)

DEPARTING(b1, b2)
4
= ¬ALIKE(b1, b2) ∧ STATIONARY(b2) ∧ MOVEFARTHER(b1, b2)

PICKINGUP(b1, b2)
4
= ¬ALIKE(b1, b2) ∧ STATIONARY(b1) ∧ MOVINGDIR(b2, (0, 1))

PUTTINGDOWN(b1, b2)
4
= ¬ALIKE(b1, b2) ∧ STATIONARY(b1) ∧ MOVINGDIR(b2, (0,−1))

CARRY(b1, b2, v)
4
= MOVINGDIR(b1, v) ∧ MOVINGDIR(b2, v)

CARRYING(b1, b2)
4
= CARRY(b1, b2, (0, 1)) ∨ CARRY(b1, b2, (0,−1))

Regular Expressions

PERSON
4
= ISPERSON+

BACKPACK
4
= ISBACKPACK+

TRASHCAN
4
= ISTRASHCAN+

CHAIR
4
= ISCHAIR+

OBJECT
4
= (ISBACKPACK | ISTRASHCAN | ISCHAIR)+

BLUE
4
= ISBLUE+

RED
4
= ISRED+

QUICKLY
4
= TRUE+ QUICK[3,] TRUE+

SLOWLY
4
= TRUE+ SLOW[3,] TRUE+

TOTHELEFTOF
4
= LEFT+

TOTHERIGHTOF
4
= RIGHT+

PICKEDUP
4
= STATIONARYCLOSE+ PICKINGUP[3,] STATIONARYCLOSE+

PUTDOWN
4
= STATIONARYCLOSE+ PUTTINGDOWN[3,] STATIONARYCLOSE+

CARRIED
4
= STATIONARYCLOSE+ CARRYING[3,] STATIONARYCLOSE+

APPROACHED
4
= STATIONARYFAR+ APPROACHING[3,] STATIONARYCLOSE+

TOWARDS
4
= STATIONARYFAR+ APPROACHING[3,] STATIONARYCLOSE+

AWAYFROM
4
= STATIONARYCLOSE+ DEPARTING[3,] STATIONARYFAR+

Table 2. The finite-state recognizers corresponding to the lexicon in Table 1(a).

specified in Table 1(a) and theta grid Ψ, as specified in Ta-
ble 1(b), would produce the following formula.

PERSON(P ) ∧ TOTHERIGHTOF(P,Q) ∧ CHAIR(Q)
∧ PICKEDUP(P,R) ∧ BACKPACK(R)

To do so, we first construct a parse tree of the sentence Λ
given the grammar Γ, using a recursive-descent parser, pro-
ducing a parse tree.Such a parse tree encodes in its struc-
ture, the dependency relationships between different parts
of speech as specified by the grammar. For each word, we
then determine from the parse tree, which words in the sen-
tence are determined to be its dependents in the sense of
government, and how many such dependents exist, from
the theta grid specified in Table 1(b). For example, the
dependents of to the right of are determined to be person
and chair, filling its first and second arguments respectively.
Moreover, we determine a consistent assignment of roles,
one of agent, patient, source, goal, and referent, for each
participant track that fills the word arguments, from the al-
lowed roles specified for that word and argument in the theta
grid. Here, P , Q, and R are participants that play the agent,
referent, and patient roles respectively.
4. Experimental Evaluation

The sentence tracker supports three distinct capabilities.
It can take sentences as input and focus the attention of a
tracker, it can take video as input and produce sentential
descriptions as output, and it can perform content-based
video retrieval given a sentential input query. To evaluate
these, we filmed a corpus of 94 short videos, of varying
length, in 3 different outdoor environments. The camera
was moved for each video so that the varying background
precluded unanticipated confounds. These videos, filmed

with a variety of actors, each depicted one or more of the 21
sentences from Table 1(c). The depiction, from video to
video, varied in scene layout and the actor(s) performing the
event. The corpus was carefully constructed in a number of
ways. First, many videos depict more than one sentence. In
particular, many videos depict simultaneous distinct events.
Second, each sentence is depicted by multiple videos. Third
the corpus was constructed with minimal pairs: pairs of
videos whose depicted sentences differ in exactly one word.
These minimal pairs are indicated as the ‘a’ and ‘b’ vari-
ants of sentences 1–9 in Table 1(c). That varying word was
carefully chosen to span all parts of speech and all senten-
tial positions: sentence 1 varies subject noun, sentence 2
varies subject adjective, sentence 3 varies subject preposi-
tion, sentence 4 varies object noun, sentence 5 varies object
adjective, sentence 6 varies object preposition, sentence 7
varies verb, sentence 8 varies adverb, and sentence 9 varies
motion preposition. We filmed our own corpus as we are
unaware of any existing corpora that exhibit the above prop-
erties. We annotated each of the 94 clips with ground truth
judgments for each of the 21 sentences, indicating whether
the given clip depicted the given sentence. This set of 1974
judgments was used for the following analyses.

4.1. Focus of Attention
Tracking is traditionally performed using cues from mo-

tion, object detection, or manual initialization on an object
of interest. However, in the case of a cluttered scene involv-
ing multiple activities occurring simultaneously, there can
be many moving objects, many instances of the same object
class, and perhaps even multiple simultaneously occurring
instances of the same event class. This presents a significant



obstacle to the efficacy of existing methods in such scenar-
ios. To alleviate this problem, one can decide which objects
to track based on which ones participate in a target event.

The sentence tracker can focus its attention on just those
objects that participate in an event specified by a sentential
description. Such a description can differentiate between
different simultaneous events taking place between many
moving objects in the scene using descriptions constructed
out of a variety of parts of speech: nouns to specify ob-
ject class, adjectives to specify object properties, verbs to
specify events, adverbs to specify motion properties, and
prepositions to specify (changing) spatial relations between
objects. Furthermore, such a sentential description can even
differentiate which objects to track based on the role that
they play in an event: agent, patient, source, goal, or ref-
erent. Fig. 2 demonstrates this ability: different tracks are
produced for the same video that depicts multiple simulta-
neous events when focused with different sentences.

We further evaluated this ability on all 9 minimal pairs,
collectively applied to all 24 suitable videos in our corpus.
For 21 of these, both sentences in the minimal pair yielded
tracks deemed to be correct depictions. We include example
videos for all 9 minimal pairs in the supplementary material.
4.2. Generation

Much of the prior work on generating sentences to de-
scribe images [4, 7, 8, 12, 13, 18] and video [1, 6, 9, 10, 16]
uses special-purpose natural-language-generation methods.
We can instead use the ability of the sentence tracker to
score a sentence paired with a video as a general-purpose
natural-language generator by searching for the highest-
scoring sentence for a given video. However, this has a
problem. Since h and a are log probabilities, g is a neg-
ative Euclidean distance, and we constrain f to be nega-
tive, scores decrease with longer word strings and greater
numbers of tracks that result from longer word strings. So
we don’t actually search for the highest-scoring sentence,
which would bias the process towards short sentences. In-
stead we seek complex sentences that are true of the video
as they are more informative.

Nominally, this search process would be intractable since
the space of possible sentences can be huge and even infi-
nite. However, we can use beam search to get an approxi-
mate answer. This is possible because the sentence tracker
can score any collection of words, not just complete phrases
or sentences. We can select the k top-scoring single-word
strings and then repeatedly extend the k top-scoring n-word
strings, by one word, to select the k top-scoring n + 1-
word strings, subject to the constraint that these n+ 1-word
strings can be extended to grammatical sentences by inser-
tion of additional words. Thus we terminate the search pro-
cess when the contraction threshold, the ratio between the
score of an expanded string and the score of the string it ex-
panded from, exceeds a specified value and the string being

expanded is a complete sentence. This contraction thresh-
old controls complexity of the generated sentence.

When restricted to FSMs, h and a will be 0/1 which be-
come −∞/0 in log space. Thus increase in the number of
words can only decrease a score to −∞, meaning that a
string of words is no-longer true of a video. Since we seek
true sentences, we terminate the above beam search process
before the score goes to −∞. In this case, there is no ap-
proximation: a beam search maintaining all n-word strings
with finite score yields the highest-scoring sentence before
the contraction threshold is met.

To evaluate this approach, we searched the space of sen-
tences in the grammar in Table 1(a) to find the best true sen-
tence for each of the 94 videos in our corpus. Note that the
grammar generates an infinite number of sentences due to
recursion in NP. Even restricting the grammar to eliminate
NP recursion yields a space of 147,123,874,800 sentences.
Despite not restricting the grammar in this fashion, we are
able to effectively find good descriptions of the videos. We
computed the accuracy of the sentence tracker in generat-
ing descriptions for all 94 videos in our corpus for multiple
contraction thresholds. Accuracy was computed as the per-
centage of the 94 videos for which the sentence tracker pro-
duced descriptions that were deemed to be true. Contrac-
tion thresholds of 0.95, 0.90, and 0.85 yielded accuracies of
63.82%, 69.14%, and 64.89% respectively. We demonstrate
examples of this approach in Fig. 3. The supplementary ma-
terial contains additional examples.

4.3. Retrieval
The availability of vast video corpora, such as on

YouTube, has created a rapidly growing demand for
content-based video search and retrieval. The existing sys-
tems, however, only provide a means to search via human-
provided captions. The inefficacy of such an approach is
evident. Attempting to search for even simple queries such
as pick up or put down yields surprisingly poor results, let
alone searching for more complex queries such as person
approached horse. Furthermore, prior work on content-
based video-retrieval systems like Sivic and Zisserman [14]
search only for objects and like Laptev et al. [11] search
only for events. Even combining such to support conjunc-
tive queries for videos with specified collections of objects
jointly with a specified event, would not effectively rule out
videos where the specified objects did not play a role in
the event or played different roles in the event. For exam-
ple, it could not rule out a video depicting a person jump-
ing next to a stationary ball for a query ball bounce or dis-
tinguish between the queries person approached horse and
horse approached person. The sentence tracker exhibits the
ability to serve as the basis of a much better video search
and retrieval tool, one that performs content-based search
with complex sentential queries to find precise semantically
relevant clips, as demonstrated in Fig. 4.



The person picked up an object.

The person put down an object.
Figure 2. Sentence-guided focus of attention: different sets of tracks for the same video produced under guidance of different sentences.

The backpack approached the trash can.

The person to the left of the trash can put down the chair.
Figure 3. Generation of sentential descriptions: constructing the highest-scoring sentence for each video that is generated by the grammar
in Table 1(a), by means of a beam search.

To evaluate this approach, we scored every video in our
corpus against every sentence in Table 1(c), rank ordering
the videos for each sentence, yielding the following statis-
tics over the 1974 scores.

chance that a random video depicts a given sentence 13.12%
top-scoring video depicts the given sentence 85.71%
at least 1 of the top 3 scoring videos depicts the
given sentence

100.00%

The judgment of whether a video depicted a given sentence
was made using our annotation. We conducted an addi-
tional evaluation with this annotation. One can threshold the
sentence-tracker score to yield a binary predicate on video-
sentence pairs. We performed 4-fold cross validation on
our corpus, selecting the threshold for each fold that maxi-
mized accuracy of this predicate, relative to the annotation,
on 75% of the videos and evaluating the accuracy with this
selected threshold on the remaining 25%. This yielded an
average accuracy of 91.74%.
5. Conclusion

We have presented a novel framework that utilizes the
compositional structure of events and the compositional

structure of language to drive a semantically meaningful
and targeted approach towards activity recognition. This
multimodal framework integrates low-level visual compo-
nents, such as object detectors, with high-level semantic
information in the form of sentential descriptions in natu-
ral language. This is facilitated by the shared structure of
detection-based tracking, which incorporates the low-level
object-detector components, and of finite-state recognizers,
which incorporate the semantics of the words in a lexicon.

We demonstrated the utility and expressiveness of our
framework by performing three separate tasks on our cor-
pus, requiring no training or annotation, simply by leverag-
ing our framework in different manners. The first, sentence-
guided focus of attention, showcases the ability to focus the
attention of a tracker on the activity described in a sentence,
indicating the capability to identify such subtle distinctions
as between The person picked up the chair to the left of the
trash can and The person picked up the chair to the right of
the trash can. The second, generation of sentential descrip-
tion of video, showcases the ability to produce a complex
description of a video, involving multiple parts of speech,



The person carried an object away from the trash can.

The person picked up an object to the left of the trash can.
Figure 4. Sentential-query-based video search: returning the best-scoring video, in a corpus of 94 videos, for a given sentence.

by performing an efficient search for the best description
though the space of all possible descriptions. The final task,
query-based video search, showcases the ability to perform
content-based video search and retrieval, allowing for such
distinctions as between The person approached the trash
can and The trash can approached the person.
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