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Abstract
We develop a semantic parser that is trained in
a grounded setting using pairs of videos cap-
tioned with sentences. This setting is both
data-efficient requiring little annotation and
far more similar to the experience of children
where they observe their environment and lis-
ten to speakers. The semantic parser recov-
ers the meaning of English sentences despite
not having access to any annotated sentences
and despite the ambiguity inherent in vision
where a sentence may refer to any combina-
tion of objects, object properties, relations or
actions taken by any agent in a video. For this
task, we collected and introduce a new dataset
for grounded language acquisition. Learning a
grounded semantic parser — turning sentences
into logical forms using captioned video — al-
lows parses to take advantage of new types of
data, lower the effort of training a semantic
parser, and ultimately lead to a better under-
standing of child language acquisition.

1 Introduction

Children learn language from observations that
are very different in nature from what parsers are
trained on today. Most of the time, rather than re-
ceiving direct feedback such as annotated sentences
or answers to direct questions, children observe
and occasionally interact with their environment.
They must use these observations to learn the struc-
ture of the speaker’s language despite never seeing
that structure overtly by inferring what the speaker
means. This weak and indirect supervision where
most of the information is obtained through pas-
sive observation poses a difficult disambiguation
problem for learners: how do you know what the
speaker is referring to in the environment, i.e., what
does the speaker mean? Speakers can refer to ac-
tions, objects, the properties of actions and objects,
relations between those actions and objects, as well
as other features in the environment and generally

The woman walks by the table with a yellow cup.
λxyz.woman x,walk x, near x y, table y,

hold x z, yellow z, cup z

Figure 1: We develop a semantic parser trained on video-
sentence pairs, without parses. At inference time a sentence,
without a video, is presented and a logical form is produced.

do so by combining multiple features into complex
sentences. Moreover, speakers need not refer to the
most visually salient parts of a visual scene. Here,
we show how to construct a semantic parser that
learns language by simultaneously resolving visual
ambiguities and training a language model from
a corpus of sentences paired with videos without
using annotated sentences.

The goal of semantic parsing is to convert a
natural-language sentence into a representation that
encodes its meaning. The parser takes as input
sentences and produces these representations – a
lambda-calculus expression in our case – which
can be used for a variety of tasks such as query-
ing databases, understanding references in images
and videos, and answering questions. To train
the parser presented here we collected a video
dataset, balanced such that the raw statistics of
the co-occurrences of objects and events are not
informative, and asked annotators on Mechanical
Turk to produce sentences which are true of those
videos. The parser is presented pairs of short clips
and sentences. It hypothesizes potential meanings
for those sentences as lambda-calculus expressions.
Each hypothesized expression serves as input for
a modular vision system that constructs a specific
detector for that lambda-calculus expression and
determines the likelihood of the parse being true of
the video. The likelihood of the parse with respect



to the video is used as supervision for the parser. To
test the parser, we annotated each sentence with its
ground-truth semantic parse, but this information
is not available at training time.

This process introduces ambiguity. For example,
Figure 1 shows a frame from a video annotated
with the sentence “The woman walks by the table
with a yellow cup.”, yet the parse, λx. object(x),
corresponding to a sentence like “There exists an
object.”, is also true of that video. For a single
video there exists an infinite number of true parses
that have high likelihood with respect to the vision
system because they are indeed indicative of some-
thing that is occurring in the video. We demon-
strate a semantic parser that, by learning the tune
the amount of polysemy, is able to resolve this
ambiguity and learn the language of the video cap-
tions.

This work makes several contributions: We show
how to construct a semantic parser that learns lan-
guage in a setting closer to that of children. We
demonstrate how to jointly resolve linguistic and
visual ambiguities at training time in a way that can
be adapted to other semantic parsing approaches.
We demonstrate how such an approach can be used
to augment data where a small number of directly
annotated sentences can be combined with a large
number of videos paired with sentences in order to
improve performance. We release a dataset system-
atically constructed and annotated on Mechanical
Turk for joint visual and linguistic learning tasks.

2 Prior work

Learning to understand language in a multimodal
environment is a well-developed task. For example,
visual question answering (VQA) datasets have led
to a number of systems capable of answering com-
plex questions about scenes (Antol et al., 2015).
The goal of our work is not to produce answers
for any one set of questions, although it is possi-
ble to do so from our results; it is instead to learn
to predict the structure of the sentences and their
meaning. This is a more general and difficult prob-
lem, in particular because at test time we do not
receive any visual input, only the sentence. The
resulting approach is reusable, generic and more
similar to the kind of general-purpose linguistic
knowledge that humans have. For example, one
could use it to answer visual questions, to guide
robotic actions, etc. Al-Omari et al. (2017) acquire
a grammar for a fragment of English and Arabic

from videos paired with sentences. They learn
a small number of grammar rules for a language
restricted to robotic commands. Learning occurs
mostly in simulation and with little visual ambigu-
ity, and the resulting model is not a parser but a
means of associating n-grams with visual concepts.

Siddharth et al. (2014) and Yu et al. (2015) ac-
quire the meaning of a lexicon from videos paired
with sentences but assume a fully-trained parser.
Matuszek et al. (2012) similarly presents a means
of learning the meanings and referents of words
restricted to attributes and static scenes. Hermann
et al. (2017) extend these notions to train agents
that learn to carry out instructions in simulated en-
vironments without the need for a parser, but do
so using simple adjective-noun-relation utterances.
Kollar et al. (2013) learn to parse similar utterances
in an interactive setting. Wang et al. (2016) cre-
ate a language game to learn a parser but do not
incorporate visual ambiguity or fallible perception.

Berant et al. (2013) describe semantic parsing
with execution by annotating answers to database
queries. This learning mechanism provides the
same results as the one described here: a parser
that produces the meanings of sentences at infer-
ence time without requiring the database, or in our
case a video. Databases have far less ambiguity
than videos; there is not temporal aspect to their
contents and there is also not notion of unreliable
perception. Berant and Liang (2014) learn to parse
sentences from paraphrases; one might consider
the work here as concerned with visual and not
just linguistic paraphrases. Artzi and Zettlemoyer
(2013) consider a setting where a validation func-
tion involves the dynamic actions of a simulated
robot while sentences describe its actions.

3 Task

Given a dataset of captioned videos, D, we train
the parameters and lexicon, θ and Λ, of a semantic
parser. At training time we perform gradient de-
scent over the parameters θ and employ GENLEX
(Zettlemoyer and Collins, 2005) to augment the
lexicon Λ. The objective function of the semantic
parser is written in terms of a visual-linguistic com-
patibility between a hypothesized parse, p, and the
video, v. This compatibility computes the likeli-
hood of the parse being true of the video, P (v|p).
At test time, we take as input a sentence without an
associated video and produce a semantic parse. We
could in principle also take as input the video and



produce a targeted parse for that visual scenario, a
problem similar to that considered by Berzak et al.
(2015), but do not do so here.

We create a CCG-based (Combinatory Categor-
ical Grammar; Steedman (1996)) semantic parser
capable of being trained in this setting. To do so,
we adapt the objective function, training proce-
dure, and feature set to this new scenario. The
visual-linguistic compatibility function is similar
to the Sentence Tracker developed in Siddharth
et al. (2014) and Yu et al. (2015). Given a parse,
the Sentence Tracker produces a targeted detector
that determines if the parse is true of a video, and
that detectors provides a weak supervision signal
for the parser.

Parses are represented as lambda-calculus ex-
pressions consisting of a set of binders and a con-
junction of literal expressions referring to those
binders. The domain of the variables are the poten-
tial object locations, or object tracks, in the videos.
For example, in the parse presented in Figure 1,
three potential object track slots are available, rep-
resented by the binders x, y, and z. Because of
perceptual ambiguities and the large number of
possible referents in any one video, we do not ex-
plicitly enumerate the space of object tracks. In-
stead, we rely on a joint-inference process between
the parser and the Sentence Tracker. Intuitively,
each literal expression of the parse asserts a con-
straint; for example, an expression might convey
that one object is approaching another and the Sen-
tence Tracker searches the space of object tracks
attempting to satisfy these constraints. In Figure 1,
for example, there is a constraint that for whichever
objects are bound to x and z, x must be near y, x
must be walking, x must be a person, etc.

4 Model

We develop an approach that combines a semantic
parser with a vision system at training time, but
does not require or use the vision system at test
time.

4.1 Semantic Parsing

We adopt a semantic parsing framework simi-
lar to that of Artzi and Zettlemoyer (2013), al-
though the general approach of using vision as
weak supervision for semantic parsing generalizes
to other parsers. CCG-based parsing employs a
small number of fixed unary and binary derivation
rules (Steedman, 2000) while learning a lexicon.

She takes the cup

NP (S\NP)/NP NP/N N
λx. person x λfgxy. fx, take xy, gy λfx. fx λx. cup x

>
NP

λx.cup x
>

S\NP
λfxy. fx, take xy, cup y

<
S

λxy. person x, take xy, cup y

Figure 2: A simple sentence parsed into a lambda-calculus
expression using a CCG-based grammar. The parse is deter-
mined by the lexicon that associates tokens with syntactic and
semantic types as well as the order of function applications.
Here, we acquire this lexicon and a means to score derivations.

In CCG-based parsing, a parser takes as input a
sequence of tokens with their possible syntactic
types derived from a lexicon that includes multi-
ple ranked hypotheses . Unlike other approaches,
the syntactic types are rich and include forward
and backward function application (the forward
and backward slash) in addition to the standard
syntactic categories. Each derivation has a current
syntactic type which is the result of the application
of a sequence of rules. To create a derivation, at
each step each rule is applied to either an individ-
ual subderivation or to a pair of derivations; this
process provides multiple hypotheses. Rules are
generic, polymorphic, and language-neutral and
include concepts like function application and type
raising (Carpenter, 1997). The parser accepts a
derivation when the tree reaches a single node. We
refer to the single node of the parse tree as the
logical form. Figure 2 shows a parse starting with
tokens and their syntactic types along with each
rule being applied.

Semantic parsing with CCGs extends this frame-
work to simultaneously derive a logical form while
performing syntactic parsing. Each syntactic rule
includes a simple semantic component that manip-
ulates the logical form of its arguments. For ex-
ample, forward function application both reduces
the syntactic type by applying the syntactic type
of right argument to that of the left, while at the
same time performing a lambda-calculus reduction
of those same arguments. Concretely, consider a
case from Figure 2 where a determiner is attached
to a noun, the cup. The tokens the and cup are hy-
pothesized to have syntactic types NP/N and N
(a function returning NP given an argument on the
right side and a noun) and semantic type λfx.fx
and λx.cup(x) (the identity function and a function
that adds a cup constraint). These two derivations
can be reduced by forward application, denoted
by >. Both the syntactic and semantic types are



applied and reduced, which means the semantics
help guide the syntax. Derivations which produce
illegal operations, such as applying an argument to
a constant, are forbidden.

Following Zettlemoyer and Collins (2005) and
Curran et al. (2007), we adopt a weighted linear
semantic parser. For each sentence paired with its
hypothesized derivation, this approach computes a
feature vector φ and a parameter vector θ. Given
a sentence s, a parse p, a lexicon Λ, the set of
all possible parses for that sentence with that lexi-
con, P (s,Λ), and an n-dimensional feature vector
computed for that sentence and parse, φ(s, p), the
parser optimizes

argmax
p∈P

θ · φ(s, p) (1)

to find the best parse p∗. Using a fixed-width beam
search, the parser enumerates derivations by choos-
ing a potential syntactic and semantic type for each
token from the lexicon and choosing a set of deriva-
tion rules to apply. For the i-th training sample
d, consisting of a sentence dsi and a video dvi , in
dataset D, and a feature function, the parser finds
margin-violating positive, E+, and negative, E−

parses, and then uses

θ +
1

|E+
i |

∑
e∈E+

i

φi(e, d
v
i )− 1

|E−i |
∑
e∈E−

i

φi(e, d
v
i )

(2)
to update the parameter θ. After each sweep
through the dataset, the lexicon Λ is augmented
using the modified GENLEX from Artzi and Zettle-
moyer (2013), which does not require the ground-
truth logical form. At no point is the logical form
needed, for either updating the lexicon or parame-
ters; we rely instead on a visual validation function
to compute the margin-violating examples.

Rather than attempting to learn a fixed lexicon
that directly maps tokens to semantic and syntac-
tic parses, we use a factored lexicon like that of
Kwiatkowski et al. (2011). This represents tokens
and any associated constants separately from po-
tential syntactic and semantic types. For example,
the token chair is associated with a single con-
stant chair; chair ` [chair]. In addition to the
token-constants pairs, there exists a list of pairs of
syntactic and semantic types along with placehold-
ers for constants; in this case a useful type might be
λv.[N : λx.placeholder(x)]. When parsing,
each token is applied to a potential syntactic and se-
mantic type and the derivation proceeds from there.
This allows for far greater reuse; the model learns

a small number of constants that a word can imply
separately from a small number of syntactic and
semantic types for any word. The weighted linear
CCG-based parser searches over potential lexical
entries, applying the token to different syntactic
and semantic types and over multiple hypotheses
for which rule should be applied. At training time,
in order to learn a reasonable lexicon and set of
parameters, a supervision signal is required to vali-
date candidates. We provide that supervision using
the vision system described below.

4.2 Sentence Tracking
To score a video-parse pair we employ a framework
similar to that of Yu et al. (2015). This approach
constructs a parse-specific model by extracting the
number of participants in the scene described by a
caption as well as the relationships and properties
of those participants. It builds a graphical model
where each participant is localized by an object
tracker and each relationship is encoded by tempo-
ral models that express the properties of the track-
ers that those models refer to. The parser’s output
representation is chosen to make building the vi-
sion system possible. Each target logical form is a
lambda expression with a set of binders, whose do-
main are objects, and a conjunction of constraints
that refer to those binders. In essence, this notes
which objects should be present in a scene and
what static and changing properties and relation-
ships those objects should have with respect to one
another.

The Sentence Tracker creates one Viterbi-based
tracker for each participant and, given a mapping
from constraints to Hidden Markov models, con-
nects each tracker and each constraint together.
Given a video v and a parse p, first a large number
of object detections are computed for the video by
using a low confidence threshold of an object detec-
tor. Trackers weave these bounding-box detections
into high-scoring object tracks and use constraints
to verify if the tracks have the desired properties
and relations. Inference proceeds jointly between
vision and parse; the parse focuses vision on events
and properties that might otherwise be missed.

Understanding the relationship between a sen-
tence and a video requires finding the objects that
the sentence refers to and determining if those ob-
jects follow the behavior implied by the sentence.
We carry out a joint optimization that finds objects
whose behavior follows certain rules. For clarity
the two steps are presented separately, while we



find the global optimum for a linear combination of
Equation (3) and Equation (4). Object trackers are a
maximum-entropy Markov model with a per-frame
score f , the likelihood that any one object detec-
tion is true, as well as a motion-coherence score
g, the likelihood that the bounding boxes selected
between frames refer to the same object instance.
Given a parse p with L participants and a video v
of length T , Equation (3) shows the optimization
where J is a set of L candidate tracks ranging over
every hypothesis from the object detector and b is
a candidate object detection.

max
J

L∑
l=1

(
T∑

t=1

f(btjt
l
) +

T∑
t=1

g(bt−1

jt−1
l

, btjt
l
)

)
(3)

Determining if an object track follows a set of
behaviors implied by a sentence is done using a col-
lection of Hidden Markov Models, HMMs. Each
has a per-frame score h that observes one or more
objects tracks, depending on the number of partic-
ipants in the behavior being modeled, and a tran-
sition function a that determines the temporal se-
quence of the behavior. Given a parse p with C
behaviors, also termed constraints, along with a
video v of length T , Equation (4) shows the opti-
mization where K is a set of states, one for each
constraint, and γ is a linking function.

max
J,K

C∑
c=1

(
T∑

t=1

hc(b
t−1

jt−1

γ1c

, btjt
γ2c

, ktc) +

T∑
t=1

ac(k
t−1
c , ktc)

)
(4)

The Sentence Tracker computes the likelihood
the parse is true of the video by jointly optimizing
over the sum of Equations (3) and (4) where the
linking function γ connects the two. The linking
function is an indicator variable that encodes the
structure of the logical form thereby filling in the
correct trackers as arguments for the corresponding
constraints. The exposition above presents a variant
using binary constraints which is trivially general-
ized to n-ary constraints by extending γ and adding
arguments to the appropriate constraint observation
functions hc. The domain of the optimization prob-
lem is the combination of all objects at all timesteps
that the logical form can refer to as well as every
state of each constraint. The Viterbi algorithm car-
ries out this optimization in time linear in the length
of the video and quadratic in the number of detec-
tions per frame. The result is a likelihood of the
parse being true of a video that we use to create the
joint model that supervises the parser with vision.
In addition, the tracker also produces tracks, a time

series of bounding boxes, which make explicit the
groundings of the sentences, although in this work
we do not use these tracks directly.

4.3 Joint Model
At training time, we jointly learn using both the
semantic parser and the language-vision compo-
nent. At test time, only the parser is used. Two
parameters are learned, a set of weights θ and the
lexicon Λ. For both the parser and the associated
language-vision component, Λ is used to structure
inference. To induce new lexical entries, we em-
ploy a variant of GENLEX (Artzi and Zettlemoyer,
2013) that takes as input a validation function —
the compatibility between a parse and the video.
This GENLEX uses an ontology of predicates, a
validation function, and templates from the current
lexicon to construct new syntactic and semantic
forms. A ground-truth logical form is not required
or used.

The joint model must learn these parameters
despite three sources of noise. First, the vision-
language component may simply fail to produce
the correct likelihood because machine vision is
far from perfect. Overcoming this requires large
beam widths to avoid falling into local minima due
to these errors.

Second, an infinite number of possibly-
erroneous parses are true of a video. When children
learn language, they face this same challenge as
they do not have access to bounding boxes or to
logical forms. The parse λx.person(x) as well as
many other seemingly reasonable parses are true
and cannot be distinguished from the ground-truth
parse — which is not available — by the vision
component. This is a far less constrained environ-
ment than other approaches to semantic parsing. It
is easy to be misguided by a loss function that is of-
ten true when it should not be and thus create many
special-purpose definitions of words that happen
to fit the peculiarities of any video. This results in
two different problems: assigning empty semantics
to many words since the likelihood of a subset of a
parse is always the same or higher than the whole
parse and excessive polysemy where the meaning
of a words is highly specific to some irrelevant fea-
ture in a video. We introduce two features to the
parser which bias it against empty semantics and
against excessive polysemy. Models of commu-
nication such as the Rational Speech Acts model
(Frank and Goodman, 2012) predict that speak-
ers will avoid inserting meaningless words. One



feature counts the number of predicates mapped
onto semantic forms which are empty that occur in
each parse. The other feature attempts to prevent
excessive polysemy by counting how many new se-
mantic forms are introduced for existing tokens by
the generated entries from each parse. As the parser
becomes more capable of handling sentences in the
training set these features begin to bias it against
adding empty semantics and new semantics forms.

Third, models in computer vision are computa-
tionally expensive while many evaluations of parse-
video pairs are required to train a parser. To over-
come this we construct a provably-correct cache
that keeps track of failing subexpressions. This
is possible because of a feature of this particu-
lar vision-language scoring function: the score
decreases monotonically with the number of con-
straints. With these improvements, the modified
semantic parser employing vision-language-based
validation learns to map sentences into semantic
parses despite facing a challenging setting with few
examples and much ambiguity.

5 Dataset

We collected and annotated a dataset of captioned
videos with fully annotated semantic parses of the
captions. The videos contain people carrying out
one of 15 actions, such as picking things up and
putting things down, with one of 20 objects span-
ning 10 different colors. We control for 11 spatial
relations between objects and actors. Many videos
depict multiple agents performing actions leading
to additional ambiguity. Videos were filmed in mul-
tiple locations with multiple agents but care was
taken to ensure that the background and agents are
not informative of the events depicted.

On Mechanical Turk we asked participants to
provide sentences that describe something about
the video. We did not specify what participants
should describe to avoid biasing them and to add
richness to the dataset. This sometimes led to sen-
tences that referred to properties of the video that
are well beyond the capacities of the vision sys-
tem, e.g., descriptions of an agent being lazy or
references to the camera’s movement. We removed
such sentences. At training time, the parser re-
ceives captioned videos but no annotations about
which objects those captions refer to. Each sen-
tence was annotated with a ground-truth semantic
form by two trained annotators using a set of 34
predicates.

To detect the objects in the videos, we used
two off-the-shelf detectors, OpenPose (Cao et al.,
2017) for person detection and YoLo (Redmon and
Farhadi, 2018) for the remaining objects, with a
significantly lowered confidence threshold. Many
objects in this dataset are small and are handled
by humans, which leads to regular object detector
failures that are only partially compensated for by
lowering the detection threshold at the cost of a
large number of false positives. We rely on the
inference mechanism of the grounded parser to
automatically eliminate these numerous false posi-
tives as candidates when grounding sentences due
to their low likelihoods.

In total, the dataset contains 1200 captions from
401 videos, which selected out of a larger body of
sentences collected and pruned as described above.
This is comparable to the size of other datasets used
for semantic parsing such as two datasets from
Tang and Mooney (2001) with 880 and 640 ex-
amples respectively and the navigation instruction
dataset (Chen and Mooney, 2011) with 706 exam-
ples (containing 3236 single sentences). Sentences
from our dataset contain 169 unique tokens with
an average of 7.93 tokens per captions. There are
an average of 2.31 objects per caption.

6 Evaluation

6.1 Experimental Setup

We adapted Cornell SFP (Semantic Parsing Frame-
work) developed by Artzi (2016) to jointly reason
about sentences and videos. We selected 720 ex-
amples for training and used 120 examples for the
validation set to finetune the model parameters. We
used the remaining 360 examples for the test set.
This split was fixed and used in all experiments
below. No sentences or videos occurred across sets.
During training, each hypothesized parse for each
sentence is marked as either correct or incorrect,
using either direct supervision with the target parse
or compatibility with the video depending on the
experiment. To generate hypotheses we used a
CKY-parser with a beam of 80 and for GENLEX
we used a beam of 80 as well. CCG-based semantic
parsers are seeded with a small number of generic
combinations of syntactic and semantic types. For
example, Artzi (2016) seed with 141 lexical entries
while we provide 98. These are factored and used
by GENLEX alongside an ontology to form new
syntactic and semantic types.



Precision Recall F1
Direct supervision

0.851 0.946 0.84 0.933 0.846 0.939

Noisy supervision (60%)
0.235 0.423 0.201 0.362 0.217 0.390

Shuffled labels (direct supervision)
0.147 0.384 0.122 0.321 0.136 0.349

Shuffled videos (weak supervision)
0.000 0.106 0.000 0.103 0.000 0.104

Object-only vision
0.051 0.387 0.042 0.349 0.046 0.367

Vision-language
0.223 0.663 0.183 0.553 0.201 0.591

Figure 3: Pairs of results for each condition. On the left
we show exact results and on the right, in italics, results for
the near miss metric. In the case of direct supervision we
train with the target parses. In the case of noisy supervision a
percentage of the time, 60% here, the parser randomly accepts
or rejects a parse. In the case of shuffled videos the sentences
are assigned to random videos. The likelihood of any sentence
being true of a random view is low. In the case of object-only
vision, the vision system consists solely of an object detector
discarding any other predicates. The full vision-language
approach learns to parse a significant fraction of the sentences,
far outperforming the object-only approach, and usually being
within one predicate of the correct answer.

6.2 Results

Figures 3 and 4 summarize the experiments and
ablation studies performed. The metrics we use
when reporting results are exact matches, where
the predicted parses must perfectly match the target
parses, and near misses, where a single predicate
in the semantic parse is allowed to differ from the
target. Experiments were averaged across 5 runs.

To establish chance-level performance, we
trained the directly supervised approach on shuffled
labels, assigning random correct parses to random
sentences. This is more powerful than a simple
chance-level performance calculation as the parser
can still take advantage of any dataset biases. Even
with the ability to exploit potential biases, perfor-
mance is very low with F1 scores of 0.136 and
0.349 for the exact and near miss metrics. Both
metrics pose a challenging learning problem.

As a baseline, we directly supervised the parser
with the target logical forms. When doing so it
achieved high performance with F1 scores of 0.841
and 0.911 for the exact match and near miss cases.
Figure 4 show performance of direct supervision
as a function of training set size.

We then added noise to the directly supervised
parser. Doing so simulates the unreliable nature
of vision and, to an extent, the ambiguities inher-

ent in vision. Noise was introduced by modifying
the compatibility function which determines if a
parse is correct. A certain percentage of the time,
that function returned true or false randomly when
given a hypothesized logical form. With around
60% noise, performance was 0.22 and 0.39 F1 for
the noisy and near miss cases. Figure 4 show per-
formance of the noisy baseline as a function of how
much noise was introduced.

The fully grounded parser produced 0.2 and 0.6
F1 scores for the exact and near miss metrics. This
is far beyond chance performance and corresponds
to direct supervision with around 55% noise. There
are a number of reasons for why performance is
not perfect. First, the evaluation metrics cannot
consider equivalences in meaning, just form. A
hypothesized parse may carry the same meaning
as the target logical form yet it will be marked in-
correct. This is much less of a problem with direct
supervision where the preferences that human an-
notators have for a particular way of expressing the
meaning of a sentence can be learned directly. In
the grounded case, this cannot be learned; physi-
cally and visually equivalent parses are all equally
likely. Second, computer vision is unreliable, i.e.,
object detectors often fail. We find that in many of
our videos while person detection is fairly reliable
object detection is unreliable. Third, vision in the
real world is very ambiguous. Predicates like hold
are true in almost every interaction. This makes
learning the meanings of words much more difficult
resulting in the grounded parser often adding use-
less entries into the predicted logical forms or sub-
stituted one predicate for a similar one. The near
miss metric shows that overall the parser learned
reasonable logical forms. Figure 5 shows six ex-
amples from our dataset along with expected and
predicted parses, both correct and incorrect.

To understand how much of the performance
of the grounded parser comes from visual correla-
tions, like the presence or absence of particular ob-
jects, as opposed to more complex and cognitively
relevant spatio-temporal relations like actions, we
ablated the parser. We removed all features other
than objects. The resulting grounded parser accepts
any hypothesized parse as long as the objects men-
tioned in that parse are present in the video. This
led to a significant performance drop, near-chance
level performance on the exact metric, F1 0.05, and
nearly half the F1 score on the near miss metric,
0.37. Having a sophisticated vision system to infer
about agents and interactions is crucial for learning.
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Figure 4: Results from training the grounded semantic parser. In blue, direct supervision as a function of the amount of training
data. In dashed blue, noisy supervision uses the whole training set but accepts and rejects parses at random for a given fraction of
the time. The red cross is the full vision system while the green o is the object detector ablation. The orange triangle shuffled
labels show chance performance. While direct supervision outperforms vision-only supervision the grounded parser closes the
gap and operates like noisy direct supervision with roughly 55% noise.

7 Discussion

We present a semantic parser that learns the struc-
ture of language using weak supervision from vi-
sion. The trained model then parses sentences with-
out the need for visual input. Learning by passive
observation in this way extends the capabilities of
semantic parsers and points the way to a more cog-
nitively plausible model of language acquisition.
Several limits remain. Evaluating parses as correct
or incorrect depending on a match to a human-
annotated logical form is an overly strict criterion
and is a problem that also plagues fully-supervised
syntactic parsing (Berzak et al., 2016). Since two
logical forms may express the same meaning, it is
not yet clear what an effective evaluation metric is
for these grounded scenarios. In addition, learning
in such a passive scenario is hard as correlations
between events, e.g., every pick up event involves
a touch event, are very difficult to disentangle.

An interesting source of error in the experimen-
tal results comes from visual ambiguities. At the
level of relative motions of labeled bounding boxes,
the analysis performed by the language-vision sys-
tem we employed here has difficulty distinguishing
certain parts of actions. For example, carrying a
shirt and wearing a shirt appear very similar to one
another as they are detections that mostly overlap a
person detection and move alongside with it. More-
over, since every agent is wearing a shirt it becomes
more difficult to learn to distinguish the two using
positive evidence alone, i.e., a maximum likelihood

approach. A more robust vision system perhaps
including object segmentations, person pose, and
weak negative evidence for the occurrence of ac-
tions would likely significantly improve the results
presented.

In the future, we intend to add a generative
model along with physical simulation allowing
the learner to imagine scenarios where a predi-
cate might not hold. This would help mitigate sys-
tematic correlations between sentences and videos.
The sentences selected here were all chosen such
that they are true of the video being shown, yet
much of what people discuss is ungrounded, or at
least not grounded in the current visual scene. We
intend to combine the weakly visually supervised
parser with an unsupervised parser and learn to
determine whter a sentence should be grounded vi-
sually during training. We hope this work will find
applications in robotics where learning to adapt
to the specific language of a user while engaging
with them is of utmost importance when deploying
robots in users’ homes.
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Annotated sentence: The woman is picking up an apple.
(i) Ground-truth parse: λxy.woman x, pick_up x y, apple y

Predicted parse: λxy.woman x, pick_up x y, apple y

Annotated sentence: A man walks across the hall holding a chair.
(ii) Ground-truth parse: λxyz.person x,walk x, across x y, hallway y, hold x z chair z

Predicted parse: λxyz.person x, from x y, person y, hold x z chair z

Annotated sentence: A man is walking toward a chair.
(iii) Ground-truth parse: λxy.person x,walk x, toward x y, chair y

Predicted parse: λxy.person x,walk x, toward x y, chair y

Annotated sentence: She places the toy car down on the table.
(v) Ground-truth parse: λxyz.person x, put_down x y, toy y, car y, on y z table z

Predicted parse: λxyz.person x, in x y, toy y, car y, on y z table z

Annotated sentence: A man is lifting the chair.
(iv) Ground-truth parse: λxy.person x, pick_up x y, chair y

Predicted parse: λxy.person x, pick_up x y, chair y

Annotated sentence: A woman reaches for a book on the table.
(vi) Ground-truth parse: λxyz.person x, pick_up x y, book y, on y z table z

Predicted parse: λxyz.person x, stand x, in x y, book y, on y z table z

Figure 5: Six examples of frames from videos in the dataset along with target and predicted logical forms showing both
successes and failures. Failures are highlighted in red. Note how incorrect parses are usually similar to the correct semantic
forms. The intended meaning is often preserved even in these cases.
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