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Abstract—We present an approach to searching large video corpora for clips which depict a natural-language query in the form of
a sentence. Compositional semantics is used to encode subtle meaning differences lost in other approaches, such as the difference
between two sentences which have identical words but entirely different meaning: The person rode the horse vs. The horse rode the
person. Given a sentential query and a natural-language parser, we produce a score indicating how well a video clip depicts that
sentence for each clip in a corpus and return a ranked list of clips. Two fundamental problems are addressed simultaneously: detecting
and tracking objects, and recognizing whether those tracks depict the query. Because both tracking and object detection are unreliable,
our approach uses the sentential query to focus the tracker on the relevant participants and ensures that the resulting tracks are
described by the sentential query. While earlier work was limited to single-word queries which correspond to either verbs or nouns,
we search for complex queries which contain multiple phrases, such as prepositional phrases, and modifiers, such as adverbs. We
demonstrate this approach by searching for 141 sentential queries in 10 Hollywood movies.
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1 INTRODUCTION

V IDEO search engines lag behind text search engines
in their wide use and performance. This is in part

because the most attractive interface for finding videos
remains a natural-language query in the form of a
sentence but determining if a sentence describes a video
remains a difficult task. This task is difficult for a number
of different reasons: unreliable object detectors which are
required to determine if nouns occur, unreliable event
recognizers which are required to determine if verbs
occur, the need to recognize other parts of speech such as
adverbs or adjectives, and the need for a representation
of the semantics of a sentence which can faithfully
encode the desired natural-language query. We propose
an approach which simultaneously addresses all of the
above problems. Approaches to date generally attempt to
independently address the various aspects that make this
task difficult. For example, they attempt to separately
find videos that depict nouns and videos that depict
verbs and essentially take the intersection of these two
sets of videos. This general approach of solving these
problems piecemeal cannot represent crucial distinctions
between otherwise similar input queries. For example, if
you search for The person rode the horse and for The horse
rode the person, existing systems would give the same
result for both queries as they each contain the same
words, but clearly the desired output for these two queries
is very different. We develop a holistic approach which
both combines tracking and word recognition to address
the problems of unreliable object detectors and trackers
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and at the same time uses compositional semantics to
construct the meaning of a sentence from the meaning of
its words in order to make crucial but otherwise subtle
distinctions between otherwise similar sentences. Given a
grammar and an input sentence, we parse that sentence
and, for each video clip in a corpus, we simultaneously
track all objects that the sentence refers to and enforce the
constraint that all tracks must be described by the target
sentence using an approach called the sentence tracker.
Each video is scored by the quality of its tracks, which are
guaranteed by construction to depict our target sentence,
and the final score correlates with our confidence that the
resulting tracks correspond to real objects in the video.
We produce a score for every video-sentence pair and
return multiple video hits ordered by their scores.

In a recent survey of video retrieval, Hu et al. [1]
note that work on semantic video search focuses on
detecting nouns and verbs, as well as using language
to search already-existing video annotation. The state of
the art in image retrieval is similar [2]. Note that the
approach presented here, by design, would fare poorly
on still images as it uses the fact that the input is a
video in order to mutually inform and constrain object
detection, tracking, and event recognition. Unlike earlier
approaches, the work presented here requires no pre-
existing annotations aside from a tiny training corpus.

Retrieving clips or frames in which a query object
occurs has been addressed both using query-by-example
and object detection. Sivic and Zisserman [3] present
a statistical local-feature approach to query-by-example.
A bounding box is placed around a target object, and
frames in which that object occurs are retrieved. Unlike
the work presented here, this search is not performed
using an object detector, but instead relies on detecting



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH YEAR 2

regions with similar statistical features. Moreover, it does
not exploit the fact that the input is a video, and instead
treats each frame of the video independently. Yu et al.
[4] detect and track a single object, a soccer ball, and
recognize actions being performed on that object during
a soccer match. They extract gross motion features by
examining the position and velocity of the object in
order to recognize events and support a small number
of domain-specific actions limited to that specific single
object. Anjulan and Canagarajah [5] track stable image
patches to extract object tracks over the duration of
a video and group similar tracks into object classes.
Without employing an object detector, these methods
cannot search a collection of videos for a particular object
class but instead must search by example. Byrne et al. [6]
employ statistical local features, such as Gabor features,
to perform object detection. These do not perform as well
as more recent object detectors on standard benchmarks
such as PASCAL VOC. Sadeghi and Farhadi [7] recognize
objects, in images, in the context of their spatial relations,
using an object detector. They train an object detector not
just for an object class, but for a combination of multiple
interacting objects. This allows them to detect more
complex scenarios, such as a person riding a horse, by
building targeted object detectors. Moreover, knowledge
of the target scenario improves the performance of the
object detector. Similarly, in our work, knowledge about
the query improves the performance of each of the
individual detectors for each of the words in the query.
But their approach differs fundamentally from the one
presented here because it is not compositional in nature.
In order to detect The person rode the horse, one must train
on examples of exactly that entire sentence, whereas in
the work presented here, independent detectors for person,
horse, and ride combine together to encode the semantics
of the sentence and to perform retrieval of a sentence
that may never have occurred in the training set.

Prior work on verb detection does not integrate with
work on object detection. Chang et al. [10] find one
of four different highlights in basketball games using
hidden Markov models and the expected structure of a
basketball game. They do not detect objects but instead
classify entire presegmented clips, are restricted to a
small number of domain-specific actions, and support
only single-word queries. Event recognition is a popular
subarea of computer vision but has remained limited to
single-word queries [11], [12], [13], [14], [15]. We will
avail ourselves of such work later [16] to show that the
work presented here both allows for richer queries and
improves on the performance of earlier approaches.

Prior work on more complex queries involving both
nouns and verbs essentially encodes the meaning of a
sentence as a conjunction of words, largely discarding
the compositional semantics of the sentence reflected by
sentence structure. Christel et al. [17], Worring et al. [18],
and Snoek et al. [19] present various combinations of text
search, verb retrieval, and noun retrieval, and essentially
allow for finding videos which are at the intersection

of multiple search mechanisms. Aytar et al. [20] rely on
annotating a video corpus with sentences that describe
each video in that corpus. They employ text-based search
methods which given a query, a conjunction of words,
attempt to find videos of similar concepts as defined by
the combination of an ontology and statistical features of
the videos. Their model for a sentence is a conjunction of
words where higher-scoring videos more faithfully depict
each individual word but the relationship between words
is lost. None of these methods attempt to faithfully encode
the semantics of a sentence and none of them can encode
the distinction between The person hit the ball and The ball
hit the person.

In what follows, we describe a system, which unlike
previous approaches, allows for a natural-language query
of video corpora which have no human-provided annota-
tion. Given a sentence and a video corpus, we retrieve a
ranked list of videos which are described by that sentence.
We show a method for constructing a lexicon with a
small number of parameters, which are reused among
multiple words, making training those parameters easy
and ensuring the system need not be shown positive
examples of every word in the lexicon. We present a
method for combining models for individual words into
a model for an entire sentence and for recognizing that
sentence while simultaneously tracking objects in order to
score a video-sentence pair. To demonstrate this approach,
we run 141 natural-language queries on a corpus of 10
full-length Hollywood movies using a grammar which
includes nouns, verbs, adjectives, adverbs, spatial-relation
prepositions, and motion prepositions. This is the first
approach which can search for complex queries which
include multiple phrases, such as prepositional phrases,
and modifiers, such as adverbs.

2 TRACKING

We begin by describing the operation of a detection-
based tracker on top of which the sentence tracker will be
constructed. To search for videos which depict a sentence,
we must first track objects that participate in the event
described by that sentence. Tracks consist of a single
detection per frame per object. To recover these tracks,
we employ detection-based tracking. An object detector
is run on every frame of a video, producing a set of
axis-aligned rectangles along with scores which corre-
spond to the strength of each detection. We employ the
Felzenszwalb et al. [21], [22] object detector, specifically
the variant developed by Song et al. [23]. There are two
reasons why we need a tracker and cannot just take the
top-scoring detection in every frame. First, there may
be multiple instances of the same object in the field of
view. Second, object detectors are extremely unreliable.
Even on standard benchmarks, such as the PASCAL
Visual Object Classes (VOC) Challenge, even the best
detectors for the easiest-to-detect object classes achieve
average-precision scores of 40% to 50% [24]. We overcome
both of these problems by integrating the intra-frame
information available from the object detector with inter-
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frame information computed from optical flow.
We expect that the motion of correct tracks agrees with

the motion of the objects in the video which we can
compute separately and independently of any detections
using optical flow. We call this quantity the motion
coherence of a track. In other words, given a detection
corresponding to an object in the video, we compute
the average optical flow inside that detection, forward-
project the detection along that vector, and expect to find
a strong detection in the next frame at that location.
We formalize this intuition into an algorithm which
finds an optimal track given a set of detections in each
frame. For each frame t in a video of length T , each
detection j has an associated axis-aligned rectangle btj and
score f(btj) and each pair of detections in adjacent frames
has an associated motion coherence score g(bt−1jt−1 , b

t
jt). We

formulate the score of a track j = 〈j1, . . . , jT 〉 as

max
j1,...,jT

T∑
t=1

f(btjt) +
T∑

t=2

g(bt−1jt−1 , b
t
jt) (1)

where we take g, the motion coherence, to be a nonincreas-
ing function of the squared Euclidean distance between
the center of bt−1jt−1 and the center of btjt projected one
frame forward. While the number of possible tracks is
exponential in the number of frames in the video, Eq. 1
can be maximized in time linear in the number of frames
and quadratic in the number of detections per frame
using dynamic programming [25], the Viterbi [26], [27]
algorithm.

The development of this tracker follows that of Barbu et
al. [28] which presents additional details of such a tracker,
including an extension which allows generating multiple
tracks per object class using non-maxima suppression.
That earlier tracker used the raw detection scores from
the Felzenszwalb et al. [21], [22] object detector. These
scores are difficult to interpret because the mean and
variance of scores varies by object class making it difficult
to decide whether a detection is strong. To get around
this problem, we pass all detections through a sigmoid

1
1+exp(−b(t−a)) whose center, a, is the model threshold and
whose scaling factor b, is 2. This normalizes the score
to the range [0, 1] and makes scores more comparable
across models. In addition, the motion coherence score
is also passed through a similar sigmoid, with center 50
and scale −1/11.

3 WORD RECOGNITION

Given tracks, we want to decide if a word describes
one or more of those tracks. This is a generalization of
event recognition, generalizing the notion of an event
from verbs to other parts of speech. To recognize if a
word describes a collection of tracks, we extract features
from those tracks and use those features to formulate
the semantics of words. Word semantics are formulated
in terms of finite state machines (FSMs) which accept
one or more tracks. Fig. 2 provides an overview of the
FSMs used in Sections 6.2 and 6.3, rendered as regular

expressions. This approach is a limiting case of that taken
by Barbu et al. [29] which used hidden Markov models
(HMMs) to encode the semantics of verbs. In essence, our
FSMs are unnormalized HMMs with binary transition
matrices and binary output distributions. This allows the
same recognition mechanism as that used by Barbu et al.
[29] to be employed here.

We construct word meanings in two levels. First, we
construct 18 predicates, shown in Fig. 1, which accept one
or more detections. We then construct word meanings
for our lexicon of 15 words, shown in Fig. 2, as regular
expressions which accept tracks and are composed out
of these predicates. This two-level construction allows
sharing low-level features and parameters across words.
All words share the same predicates which are encoded
relative to 9 parameters: far, close, stationary, ∆closing,
∆angle, ∆pp, ∆quickly, ∆slowly, and overlap. These
parameters are learned from a tiny number of positive
and negative examples that cover only a fraction of the
words in the lexicon. To make predicates independent of
the video resolution, detections are first rescaled relative
to a standard resolution of 1280× 720, otherwise param-
eters such as far would need to vary with resolution.

Given a regular expression for a word, we can construct
a nondeterministic FSM, with one accepting state, whose
allowable transitions are encoded by a binary transition
matrix h, giving score zero to allowed transitions and −∞
to disallowed transitions, and whose states accept de-
tections which agree with the predicate a, again with
the same score of zero or −∞. With this FSM, we can
recognize if a word describes a track 〈̂1, . . . , ̂T 〉, by
finding

max
k1,...,kT

T∑
t=1

h(kt, bt̂t) +

T∑
t=2

a(kt−1, kt) (2)

where k1 through kT−1 range over the set of states of the
FSM and kT is the singleton set containing the accepting
state. If this word describes the track, the score yielded by
Eq. 2 will be zero. If it does not, the score will be −∞. The
above formulation can be generalized to multiple tracks
and is the same as that used by Barbu et al. [28]. We find
accepting paths through the lattice of states again using
dynamic programming, the Viterbi algorithm. Note that
this method can be applied to encode not just the meaning
of verbs but also of other parts of speech. For example,
the meaning of a static concept, such as a preposition like
left-of that encodes a temporally invariant spatial relation,
can be encoded as a single-state FSM whose output
predicate encodes that relation. The meaning of a dynamic
concept, such as a preposition like towards that encodes
temporally variant motion, can be encoded in a multi-
state FSM much like a verb. It is well known in linguistics
that the correspondence between semantic classes and
parts of speech is flexible. For example, some verbs,
like hold, encode static concepts, while some nouns, like
wedding, encode dynamic concepts. Employing a uniform
but powerful representation to encode the meaning of
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all parts of speech supports this linguistic generality
and further allows a single but powerful mechanism to
build up the semantics of sentences from the semantics
of words. This same general mechanism admits some
resiliency to noisy input by allowing one to construct
FSMs with ‘garbage’ states that accept noisy segments.
We avail ourselves of this capacity by incorporating true+

into many of the word FSMs in Fig. 2.

4 SENTENCE TRACKER

Our ultimate goal is to search for videos described by a
natural-language query in the form of a sentence. The
framework developed so far falls short of supporting
this goal in two ways. First, as we attempt to recognize
multiple words that constrain a single track, it becomes
unlikely that the tracker will happen to produce an
optimal track which satisfies all the desired predicates.
For example, when searching for a person that is both
running and doing so leftward, the chance that there may
be a single noisy frame that fails to satisfy either the
running predicate or the leftward predicate is greater than
for a single-word query. Second, a sentence is not a
conjunction of words, even though a word is represented
here as a conjunction of features, so a new mechanism is
required to faithfully encode the compositional semantics
of a sentence as reflected in its structure. Intuitively, we
must encode the mutual dependence in the sentence The
tall person rode the horse so that the person is tall, not the
horse, and the person is riding the horse, not vice versa.

We address the first point by biasing the tracker to
produce tracks which agree with the predicates that
are being enforced. This may result in the tracker pro-
ducing tracks which have to consist of lower-scoring
detections, which decreases the probability that these
tracks correspond to real objects in the video, This is
not a concern as we will present the users with results
ranked by their tracker score. In essence, we pay a
penalty for forcing a track to agree with the enforced
predicates and the ultimate rank order is influenced by
this penalty. The computational mechanism that enables
this exists by virtue of the fact that our tracker and word
recognizer have the same internal representation and
algorithm, namely, each finds optimal paths through a
lattice of scored detections, f(btjt), for the tracker, or
states scored by their output predicate, h(kt, btjt), for
the word recognizer, and each weights the links in that
lattice by a score, the motion coherence, g(bt−1jt−1 , b

t
jt),

for the tracker, and state-transition score, a(kt−1, kt), for
the word recognizer. We simultaneously find the track
j1, . . . , jT and state sequence k1, . . . , kT that optimizes a
joint objective function

max
j1,...,jT

max
k1,...,kT

(
T∑

t=1

f(btjt) +

T∑
t=2

g(bt−1jt−1 , b
t
jt)+

T∑
t=1

h(kt, btjt) +

T∑
t=2

a(kt−1, kt)

)
(3)

which ensures that, unless the state sequence for the word
FSM leads to an accepting state, the resulting aggregate
score will be −∞. This constrains the track to depict
the word and finds the highest-scoring one that does
so. Intuitively, we have two lattices, a tracker lattice
and a word-recognizer lattice, and we find the optimal
path, again with the Viterbi algorithm, through the cross-
product of these two lattices. This cross-product lattice
construction is shown in Fig. 3.

The above handles only a single word, but given a
sentential query we want to encode its semantics in terms
of multiple words and multiple trackers. We parse an
input sentence with a grammar, shown in Fig. 5, and
extract the number of participants and the track-to-role
mapping. Each sentence that describes an event has a
number of roles that must be filled with entities that
serve as participants in that event. For example, in the
sentence The person rode the horse quickly away from the
other horse, there are three participants, one person and
two horses, and each of the three participants plays a
different role in the sentence, agent (the entity performing
the action, in this case the person), patient (the entity
affected by the action, in this case the first horse), and
goal (the destination of the action, in this case the second
horse). Each word in this sentence refers to a subset of
these three different participants, as shown in Fig. 4, and
words that refer to multiple participants, such as ride,
must be assigned participants in the correct argument
order to ensure that we encode The person rode the horse
rather than The horse rode the person. We use a custom
natural-language parser which takes as input a grammar,
along with the arity and thematic roles of each word,
and computes a track-to-role mapping: which participants
fill which roles in which words. We employ the same
mechanism as described above for simultaneous word
recognition and tracking, except that we instantiate one
tracker for each participant and one word recognizer for
each word. The thematic roles, θnw, map the nth role in
a word w to a tracker. Fig. 4 displays an overview of
this mapping for a sample sentence. Trackers are shown
in red, word recognizers are shown in blue, and the
track-to-role mapping is shown using the arrows. Given
a sentential query that has W words, L participants, and
track-to-role mapping θnw, we find a collection of tracks
〈j11 , . . . , jT1 〉, . . . , 〈j1L, . . . , jTL 〉, one for each participant, and
accepting state sequences 〈k11, . . . , kT1 〉, . . . , 〈k1W , . . . , kTW 〉,
one for each word, that optimizes a joint objective
function

max
j11 ,...,j

T
1

...
j1L,...,j

T
L

max
k1
1,...,k

T
1

...
k1
W ,...,kTW

(
L∑

l=1

T∑
t=1

f(btjtl
) +

T∑
t=2

g(bt−1
jt−1
l

, btjtl
)+

W∑
w=1

T∑
t=1

hw(ktw, b
t
jt
θ1w

, btjt
θ2w

) +

T∑
t=2

aw(kt−1w , ktw)

)
(4)

where aw and hw are the transition matrices and pred-
icates for word w, btjtl is a detection in the tth frame
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FAR(a, b)
4
= |acx − bcx| − awidth

2 − bwidth
2 > far

REALLY-CLOSE(a, b)
4
= |acx − bcx| − awidth

2 − bwidth
2 > close

2

CLOSE(a, b)
4
= |acx − bcx| − awidth

2 − bwidth
2 > close

2

STATIONARY(b)
4
= flow-magnitude(b) ≤ stationary

CLOSING(a, b)
4
= |acx − bcx| > |project(a)cx − project(b)cx|+ ∆closing

DEPARTING(a, b)
4
= |acx − bcx| < |project(a)cx − project(b)cx|+ ∆closing

MOVING-DIRECTION(a, b, α)
4
= |flow-orientation(a)− α|◦ < ∆angle ∧

flow-magnitude(a) > stationary

LEFT-OF(a, b)
4
= acx < bcx + ∆pp

RIGHT-OF(a, b)
4
= acx > bcx + ∆pp

LEFTWARD(a, b)
4
= MOVING-DIRECTION(a, b, 0)

LEFTWARD(a, b)
4
= MOVING-DIRECTION(a, b, π)

STATIONARY-BUT-FAR(a, b)
4
= FAR(a, b) ∧ STATIONARY(a) ∧ STATIONARY(b)

STATIONARY-BUT-CLOSE(a, b)
4
= CLOSE(a, b) ∧ STATIONARY(a) ∧ STATIONARY(b)

MOVING-TOGETHER(a, b)
4
= |flow-orientation(a)− flow-orientation(b)|◦ < ∆angle ∧

flow-magnitude(a) > stationary ∧
flow-magnitude(b) > stationary

APPROACHING(a, b)
4
= CLOSING(a, b) ∧ STATIONARY(b)

QUICKLY(a)
4
= flow-magnitude(a) > ∆quickly

SLOWLY(a)
4
= stationary < flow-magnitude(a) < ∆slowly

OVERLAPPING(a, b)
4
= a∩b

a∪b ≥ overlap

Fig. 1. Predicates which accept detections, denoted by a and b, formulated around 9 parameters. These predicates
are used for the second and third experiment, Sections 6.2 and 6.3. Predicates for the first experiment, Section 6.1,
are similar and provided in the appendix. The function project projects a detection forward one frame using optical
flow. The functions flow-orientation and flow-magnitude compute the angle and magnitude of the average optical-flow
vector inside a detection. The function acx accesses the x coordinate of the center of a detection. The function awidth
computes the width of a detection. The functions ∪ and ∩ compute the area of the union and intersection of two
detections respectively. The function |·|◦ computes angular separation. Words are formed as regular expressions over
these predicates.

of the lth track, and btjt
θnw

connects a participant that
fills the nth role in word w with the detections of its
tracker. Since the aggregate score will be −∞ if even a
single word-recognizer score would be −∞, this equation
constrains the subcollection of tracks that play roles in
each of the words in the sentence to satisfy the semantic
conditions for that word, collectively constraining the
entire collection of tracks for all of the participants to
satisfy the semantic conditions for the entire sentence.
Further, it finds that collection of tracks with maximal
tracker score sum. In essence, for each word, we take the
cross product of its word lattice with all of the tracker
lattices that fill roles in that word, collectively taking a
single large cross product of all word and tracker lattices
in a way that agrees with the track-to-role mapping, and
find the optimal path through the resulting lattice. This
allows us to employ the same computational mechanism,
the Viterbi algorithm, to find this optimal node sequence.
The resulting tracks will satisfy the semantics of the input
sentence, even if this incurs a penalty by having to choose
lower-scoring detections.

5 RETRIEVAL

We employ the mechanisms developed above to perform
video retrieval given a sentential query. Given a corpus
of videos, we retrieve short clips which depict a full
sentence from these longer videos. To do so, we use the
fact that the sentence tracker developed above scores
a video-sentence pair. The sentence-tracker score sums
the scores of the participant trackers and the scores
of the word recognizers. As explained in the previous
section, the word-recognizer score, and thus the sum of
all such, is either 0 or −∞. This means that the aggregate
sentence-tracker score will be −∞ if if no tracks can be
found which depict the query sentence. Otherwise, it will
simply be the tracker-score sum. This score indicates our
confidence in how well a video depicts a query sentence,
the better the tracker score the more confident we can
be that the tracks correspond to real objects in the video.
The fact that those tracks are produced at all ensures that
they depict the query sentence. We take this correlation
between score and whether a video depicts a sentence to
perform video retrieval. Given a corpus of clips, we run
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horse(a)
4
= (aobject-class = “horse”)+

person(a)
4
= (aobject-class = “person”)+

quickly(a)
4
= true+ QUICKLY(a){3,} true+

slowly(a)
4
= true+ SLOWLY(a){3,} true+

from the left(a, b)
4
= true+ LEFT-OF(a, b){5,} true+

from the right(a, b)
4
= true+ RIGHT-OF(a, b){5,} true+

leftward(a)
4
= true+ LEFTWARD(a){5,} true+

rightward(a)
4
= true+ RIGHTWARD(a){5,} true+

to the left of(a, b)
4
= true+ LEFT-OF(a, b){3,} true+

to the right of(a, b)
4
= true+ RIGHT-OF(a, b){3,} true+

towards(a, b)
4
= STATIONARY-BUT-FAR(a, b)+ APPROACHING(a, b){3,}

STATIONARY-BUT-CLOSE(a, b)+

away from(a, b)
4
= STATIONARY-BUT-CLOSE(a, b)+ DEPARTING(a, b){3,}

STATIONARY-BUT-FAR(a, b)+

ride(a, b)
4
= true+ (MOVING-TOGETHER(a, b) ∧ OVERLAPPING(a, b)){5,} true+

lead(a, b)
4
= true+


¬REALLY-CLOSE(a, b) ∧
MOVING-TOGETHER(a, b) ∧(

(LEFT-OF(a, b) ∧ LEFTWARD(a)) ∨
(RIGHT-OF(a, b) ∧ RIGHTWARD(a))

)

{5,}

true+

approach(a, b)
4
= true+ APPROACHING(a, b){5,} true+

Fig. 2. Regular expressions which encode the meanings of each of the 15 words or lexicalized phrases in the lexicon
used for the second and third experiment, Sections 6.2 and 6.3. These are composed from the predicates shown in
Fig. 1. Regular expressions for the first experiment, Section 6.1, are similar and provided in the appendix. We use an
extended regular-expression syntax where an exponent of {t, } allows a predicate to hold for t or more frames.

the sentence tracker with the query sentence on each clip.
Clips are then ranked by their sentence-tracker score.

The above approach retrieves short clips from a corpus
of such. Our ultimate goal, however, is to take, as input,
videos of arbitrary length and find short clips which
depict the query sentence from these longer videos.
The sentence tracker is able to find a single instance
of an event in a long video because, as shown in
Fig. 2, word meanings have garbage states of unbounded
length prepended and appended to them. But this would
produce a single detected event for each long video
instead of potentially many short clips for each input
video. To produce multiple clips, we split all input videos
into short, several second long, clips and produce a
corpus of clips on which we perform video retrieval.
The exact clip length is unimportant as long as the query
sentences can be fully depicted in the clip length because,
as noted above, the sentence tracker will find shorter
events in a longer clip. This also motivates the use of
fixed-length clips as all words in our chosen lexicon
depict short events. One downside of this is the inability
to detect events that straddle clip boundaries. To address
this problem, we segment input videos into short but
overlapping clips, ensuring that each clip boundary is
contained within another clip.

Given the corpus of clips to be searched, the other
piece of information required is the query sentence.

The sentence is first parsed according to the grammar
shown in Fig. 5. The grammar presented is context-free
and the sentence is parsed using a standard recursive-
descent parser. Note that the grammar presented here
is infinitely recursive. Noun phrases optionally contain
prepositional phrases which contain other noun phrases.
For one example one might say: The person to the left of
the horse to the right of the person to the left of the horse
. . . . The words shown in Fig. 2 require arguments and
each of these arguments has one of five thematic roles:
agent, patient, referent, goal, and source. The parse tree,
together with the role information, are used to determine
the number of participants and which participants fill
which roles in the event described by the sentence. This
provides the track-to-role mapping, θ, in Eq. 4.

An alternate method for producing this mapping
would be to employ a more general natural-language
parser such as the Stanford Parser [30]. Given an input
sentence such as The person rode the horse toward the horse,
the Stanford Parser produces the following dependencies

det(person-2, The-1)
nsubj(rode-3, person-2)
root(ROOT-0, rode-3)
det(horse-5, the-4)
dobj(rode-3, horse-5)
det(horse-8, the-7)
prep_toward(rode-3, horse-8)

which can also be used to construct the requisite track-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH YEAR 7

word 1 word W

...
...

...
...

· · ·

· · ·

· · ·

· · ·

h a

t = 1 t = 2 t = 3 t = T

1

2

3

K1

1

2

3

K1

1

2

3

K1

1

2

3

K1

× · · ·×

...
...

...
...

· · ·

· · ·

· · ·

· · ·

h a

t = 1 t = 2 t = 3 t = T

1

2

3

KW

1

2

3

KW

1

2

3

KW

1

2

3

KW

×

...
...

...
...

· · ·

· · ·

· · ·

· · ·

f g

t = 1 t = 2 t = 3 t = T

j = 1

j = 3

j = 2

j = J t

b11

b12

b13

b1J1

b21

b22

b23

b2J2

b31

b32

b33

b3J3

bT1

bT2

bT3

bTJT

× · · ·×

...
...

...
...

· · ·

· · ·

· · ·

· · ·

f g

t = 1 t = 2 t = 3 t = T

j = 1

j = 3

j = 2

j = J t

b11

b12

b13

b1J1

b21

b22

b23

b2J2

b31

b32

b33

b3J3

bT1

bT2

bT3

bTJT

track 1 track L

Fig. 3. Tracker lattices are used to track each participant. Word lattices constructed from word FSMs for each word in
the sentence recognize collections of tracks for participants that exhibit the semantics of that word as encoded in the
FSM. We take the cross product of multiple tracker and word lattices to simultaneously track participants and recognize
words. This ensures that the resulting tracks are described by the desired sentence.

to-role mapping. The output above correctly identifies
three participants, person-2, horse-5, and horse-8. Note how
the transitive verb rode-3 distinguishes between its two
arguments, identifying person-2 as its subject and horse-
5 as its direct object. Using a general natural-language
parser would allow a retrieval system to handle a much
larger space of sentences and alleviate the need to specify
the grammar and track-to-role mapping mechanism for
each word. This approach would still require specification
of the semantics of each word. We construct the exposition
and experiments around the first approach, with a custom
grammar and parser, to render the algorithm and its
requirements more transparent.

The above procedure for searching a corpus of clips
can be sped up significantly when searching the same
corpus with multiple sentential queries. First, the object
detections required for the sentence tracker are indepen-
dent of the query sentence. In other words, the object
detector portion of the lattice, namely the score, position,
and optical flow for each detection, are unaffected by
the query sentence even though the tracks produced are
affected by it. This can be seen in Eq. 4 where neither f
(the detection score), g (the motion coherence), nor either
of their arguments depend on k (the lexical entry of
a word), or θ (the track to role mapping). This allows
us to preprocess the video corpus and compute object
detections and optical-flow estimates which can be reused
with different sentential queries. This constitutes the
majority of the runtime of the algorithm; object detection

and optical-flow estimation are an order of magnitude
slower than parsing and sentence-tracker inference.

The first speedup addressed how to decrease the
computation for each clip in the corpus. The second
addresses the fact that the resulting retrieval algorithm
still requires inspecting every clip in the corpus to
determine if it depicts the query sentence. We ameliorate
this problem by first noting that the lexicon and grammar
presented in Figs. 2 and 5 have no negation. This means
that in order for a video to depict a sentence it must
also depict any fragment of that sentence. By sentence
fragment, we mean any subsequence of a word string that
can be generated by any terminal or nonterminal in the
grammar. For example, the sentence The person approached
the horse quickly has sentence fragments person, horse,
approached, approached the horse, quickly, and approached
the horse quickly Any video depicting this entire sentence
must also depict these fragments. Were our grammar to
have negation, this would not be true; a video depicting
the sentence The person did not approach the horse would
not depict the fragment approach the horse. This leads
to an efficient algorithm for reusing earlier queries to
speed up novel queries. Intuitively, if you’ve already
determined that nothing approaches a horse in a clip,
nothing will approach a horse quickly in that clip. In
other words, one can parse the query sentence and
look through all previous queries, potentially queries of
sentence fragments, to see which queries form subtrees of
the current query. All clips which have score −∞ for these
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The tall person rode the horse quickly leftward away from the other horse

agent-track patient-track source-track

person horse

Fig. 4. Different sentential queries lead to different cross products. The sentence is parsed and the role of each
participant, show in red, is determined. A single tracker lattice is constructed for each participant. Words and lexicalized
phrases, shown in blue, have associated word lattices which encode their semantics. The arrows between words and
participants represent the track-to-role mappings, θ, required to link the tracker and word lattices in a way that faithfully
encodes the sentential semantics. Some words, like determiners, shown in grey, have no semantics beyond determining
the parse tree and track-to-role mapping. The dashed lines indicate that the argument order is essential for words which
have more than one role. In other words, predicates like ride and away from are not symmetric. Detection sources
are shown in black, in this case two object detectors. The tracker associated with each participant has access to all
detection sources, hence the bipartite clique between the trackers and the detection sources.

S → NP VP NP → D [A] N [PP]
D → an | the A → blue | red
N → person | horse | backpack | trash can | chair | object PP → P NP
P → to the left of | to the right of VP → V NP [Adv] [PPM]
V → approached | lead | carried | picked up | put down | rode Adv → quickly | slowly
PPM → PM NP | from the left | from the right PM → towards | away from

Fig. 5. The grammar for sentential queries used in Section 6. Items in black are shared between all experiments. Items
in red are exclusive to the first experiment, Section 6.1. Items in blue are exclusive to the second and third experiments,
Sections 6.2 and 6.3.

shorter queries can be eliminated from consideration
when searching for the longer query. This enables scaling
to much larger video corpora by immediately eliminating
videos which cannot depict the query sentence.

6 RESULTS

We present three experiments which test video retrieval
using sentential queries. The first employs a corpus of
clips collected specifically for this task which facilitates
more complex queries with a larger number of nouns
and participants while being designed to stress the
system by employing a multitude of nearly-identical
query sentences. The second and third employ a corpus
of 10 full-length Hollywood movies showing the ability
of this approach to handle videos found in the wild and
not filmed specifically for this task.

6.1 The new3 corpus

We first evaluate this approach on a corpus1 (called new3)
of 94 short clips shot outdoors from a stationary camera.
These clips show between one and two people performing
actions with one or two objects, selected from a collection
of three objects, all present in the field of view in every
clip. The language fragment supported by this corpus
includes five nouns: one for each of the objects, one for

1. The new3 video corpus along with human annotations is available
at http://0xab.com/research/video-events/new3-corpus.tar.gz.

people, and a generic noun object. The later experiments
on Hollywood movies only support two nouns: person
and horse, due to the fact that object detector performance
is much lower on this more challenging set of videos.
Frames from sample videos in new3 are shown in Fig. 7.
To search this corpus using sentential queries we first
formulate the semantics of a small fragment of English
consisting of 17 lexical items (5 nouns, 2 adjectives,
4 verbs, 2 adverbs, 2 spatial-relation prepositions, and
2 motion prepositions). The grammar and lexicon for this
fragment of English are presented in Fig. 5 and consist of
the black and red portions of the figure. The semantics of
the words are formed similarly to Figs. 1 and 2 and the
corresponding figures for this experiment are provided
in the appendix. We form 21 query sentences, shown
in Fig. 6, including in these all possible minimal pairs
which can be constructed using the given grammar while
ignoring the infinite recursion in the noun phrase. By a
minimal pair we mean two sentences which differ only
in one part of speech. For example the sentences

The red object approached the chair.
The blue object approached the chair.

form a minimal pair which differs only in the adjective
in the subject noun phrase. This ensures a more difficult
test where each part of speech in each query must be
correctly interpreted.
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We evaluate this approach by running each sentential
query against the video corpus. Chance performance, the
probability that a sentence is depicted by a randomly
selected video, is 13.12%. Given a sentential query, the
top-scoring video for that sentence depicts that sentence
85.71% of the time. This shows that we are able to suc-
cessfully retrieve clips given sentential queries even when
many queries form minimal pairs which are difficult to
distinguish and even when we restrict ourselves to only
the top hit.

6.2 Ten westerns

We further demonstrate the utility of this approach on
a more challenging corpus composed of 10 Hollywood
westerns: Black Beauty (Warner Brothers, 1994), The Black
Stallion (MGM, 1979), Blazing Saddles (Warner Brothers,
1974), Easy Rider (Columbia Pictures, 1969), The Good
the Bad and the Ugly (Columbia Pictures, 1966), Hidalgo
(Touchstone Pictures, 2004), National Velvet (MGM, 1944),
Once Upon a Time in Mexico (Columbia Pictures, 2003),
Seabiscuit (Universal Pictures, 2003), and Unforgiven
(Warner Brothers, 1992). In total, this video corpus has
1187 minutes of video, roughly 20 hours. We temporally
downsampled all videos to 6 frames per second but
kept their original spatial resolutions which varied from
336×256 pixels to 1280×544 pixels with a mean resolution
of 659.2× 332.8 pixels. We split these videos into 37187
clips, each clip being 18 frames (3 seconds) long, while
overlapping the previous clip by 6 frames. This overlap
ensures that actions that might otherwise occur on clip
boundaries will also occur as part of a clip. While there is
prior work on shot segmentation [31] we did not employ
it for two reasons. First, it complicates the system and
provides an avenue for additional failure modes. Second,
the approach taken here is able to find an event inside a
longer video with multiple events. The only reason why
we split the videos into clips is to return multiple hits.

We adopt the grammar from Fig. 5, specifically the
black and blue portions. This grammar allows for sen-
tences that describe people interacting with horses, hence
our choice of genre for the video corpus, namely westerns.
A requirement for determining whether a video depicts
a sentence, and the degree to which it depicts that
sentence, is to detect the objects that might fill roles in
that sentence. Previous work has shown that people and
horses are among the easiest-to-detect objects, although
the performance of object detectors, even for these classes,
remains extremely low. To ensure that we did not test on
the training data, we employed previously-trained object
models that have not been trained on these videos but
have instead been trained on the PASCAL VOC Challenge
[24]. We use models trained by the UoCTTI LSVM-
MDPM team (the authors of Felzenszwalb et al. [21],
[22]) for the 2009 Challenge. On the 2009 Challenge,
the person model achieves an AP score of 41.5% and
the horse model achieves an AP score of 38.0%. We
note that the improvement in AP scores for these object
classes in subsequent years of the Challenge has been

minor. We also require settings for the 9 parameters,
shown in Fig. 1, which are required to produce the
predicates which encode the semantics of the words in
this grammar. We trained all 9 parameters simultaneously
on only 3 positive examples and 3 negative examples.
Note that these training examples cover only a subset
of the words in the grammar but are sufficient to define
the semantics of all words because this word subset
touches upon all the underlying parameters. Training
proceeded by exhaustively searching a small uniform
grid, with between 3 and 10 steps per dimension, of all
nine parameter settings to find a combination which best
classified all 6 training samples which were then removed
from the test set. Yu and Siskind et al. [32] present an
alternate strategy for training the parameters of a lexicon
of words given a video corpus.

We generated 204 sentences that conform to the gram-
mar in Fig. 5 from the template shown in Fig. 8. We
eliminated the 63 queries that involve people riding
people and horses riding people or other horses, as our
video corpus has no positive examples for these sentences.
This leaves us with 141 queries which conform to our
grammar. For each sentence, we scored every clip paired
with that sentence and return the top 10 best-scoring clips
for that sentence. Each of these top 10 clips was annotated
by a human judge with a binary decision: is this sentence
true of this clip? In Fig. 10(a), we show the average
precision of the system over all 141 queries on the top
10 hits for each query as a function of a threshold on the
scores. As the threshold nears zero, the system may return
fewer than 10 results per sentence because it eliminates
query results which are unlikely to be true positives.
As the threshold tends to −∞, the average precision
across all top 10 clips for all sentences is 22.9%, and at
its peak, the average precision is 72.4%. In Fig. 10(b),
we show the number of results returned per sentence,
eliminating those results which have a score of −∞ since
that means that no tracks could be found which agree
with the semantics of the sentence, On average, there
are 7.96 hits per sentence, with standard deviation 3.61,
and with only 14 sentences having no hits. In Fig. 10(c),
we show the number of correct hits per sentence. On
average, there are 1.83 correct hits per sentence, with
standard deviation 2.26, and with 80 sentences having at
least one true positive.

We highlight the usefulness of this approach in Fig. 11
where we show the top 6 hits for two similar queries:
The person approached the horse and The horse approached
the person.2 Hits are presented in order of score, with
the highest scoring hit at the top and scores decreasing
as one moves down. Note how the results for the two
sentences are very different from each other and each
sentence has 3 true positives and 3 false positives. With
existing systems, both queries would provide the same
hits as they treat sentences as conjunctions of words.

2. A video search engine that supports all 10 full-length Hollywood
movies and all 141 sentential queries discussed in the text is available
at http://0xab.com/research/video-events/westerns.html.
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The backpack approached the trash can. The chair approached the trash can.
The red object approached the chair. The blue object approached the chair.
The person to the left of the trash can put down an object. The person to the right of the trash can put down an object.
The person put down the trash can. The person put down the backpack.
The person carried the red object. The person carried the blue object.
The person picked up an object to the left of the trash can. The person picked up an object to the right of the trash can.
The person picked up an object. The person put down an object.
The person picked up an object quickly. The person picked up an object slowly.
The person carried an object towards the trash can. The person carried an object away from the trash can.
The backpack approached the chair. The red object approached the trash can.
The person put down the chair.

Fig. 6. The 21 sentential queries used in Section 6.1. Differences in corresponding minimal pairs are highlighted in red
and green.

The person carried an object away from the trash can.

The person picked up an object to the left of the trash can.

Fig. 7. Sentential-query-based video search: returning the best-scoring video, in a corpus of 94 videos, for a given
sentence.

X {approached Y {,quickly,slowly} {,from the left,from the right},
{lead,rode} Y {,quickly,slowly} {,leftward,rightward, {towards,away from} Z}}

Fig. 8. The template used to generate the 141 query sentences where X, Y, and Z are either person or horse. The
template generates 204 sentences out of which 63 are removed because they involve people riding people and horses
riding people or other horses for which no true positives exist in our video corpus.

6.3 Comparison

We compare our results against a baseline method that
employs the same approach that is used in state-of-the-
art video-search systems. We do not compare against
any particular existing system because no current system
employs state-of-the-art object or event detectors and
thus any such system would be severely handicapped
in its inability to reliably detect people, horses, and the
particular events we search for. Our baseline operates
as follows. We first apply an object detector to each
frame of every clip to detect people and horses. For
comparison purposes, we employ the same object detector

and pretrained models as used for the experiments in
Section 6.2, including passing the raw detector score
through the same sigmoid. We rank the clips by the
average score of the top detection in each frame. If the
query sentence contains only the word person, we rank
only by the person detections. If the query sentence
contains only the word horse, we rank only by the horse
detections. If the query sentence contains both the words
person and horse, we rank by the average of the top person
and top horse detection in each frame. We then apply a
binary event detector to eliminate clips from the ranking
that do not depict the event specified by the entire query
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sentence. For this purpose, we employ a state-of-the-art
event detector, namely that of Kuehne et al. [16]. We
train that detector on six samples of each entire query
sentence and remove those samples from the test set. We
then report the top 10 ranked clips that satisfy the event
detector and compare those clips against the top 10 clips
produced by our method.

We compared our system against this baseline on
three different sentential queries: The person rode the horse,
The person lead the horse, and The person approached the
horse. The results are summarized in Fig. 9. Note that
our approach yields significantly higher precision on
each of the queries as well as higher overall average
precision. Further note that this baseline system was
trained on a total of 18 training samples: six samples for
each of three query sentences In contrast, our method
was trained on a total six training samples. Not only
was our method trained on one third as many training
samples, our method can support all 141 distinct queries
with its training set, while the baseline only supports
three queries with its training set.

7 DISCUSSION

As discussed in Section 1, previous work falls into
two categories: search by example and attribute-based
approaches. In the former, a sample image or video is
provided and similar images or videos are retrieved.
Conventional event-recognition systems are of this type.
They train models on collections of query clips and find
the target clips which best match the trained model. In
the limit, such systems find the target clips most-similar
to a single query clip. Attribute-based approaches are
usually applied to images, not videos. Such approaches,
given a sentence or sentence fragment, extract the words
from that sentence and use independent word models to
score each image or video clip [33], [34]. Some variants
of these approaches, such as that of Siddiquie et al. [35],
learn correlations between multiple features and include
feature detectors which are not present in the input
query. Some systems present various combinations of
the approaches described above such as those of Christel
et al. [17], Worring et al. [18], and Snoek et al. [19].

None of the approaches described above link features
in a way that is informed by the structure of the sentence,
hence they are unable to support sentential queries. What
we mean by this is they cannot show the key difference
that we underscore in this work, the ability to encode
the semantics of a query sentence with enough fidelity
to differentiate between The person rode the horse and The
horse rode the person. The baseline system we compare
against in Section 6.3 was specifically designed to model
the predominant current methodology, updated to use
state-of-the-art object and event recognizers. Specifically,
it modeled queries as bags of words with no reflection
of argument structure.

In the experiments in Section 6.2, we report only true
positives and the associated precision, not true negatives
nor the associated recall. The reason is simple: reporting

true negatives would require annotating the entire corpus
of 37187 clips with truth values for all 141 queries, a
monumental and tedious task. We only annotate the top
ten hits for each of the 141 queries as to their truth value,
allowing us only to report true positives. That raises
a potential question: what is the chance that we may
have missed potential hits for our queries. We note that
movies have very different properties from surveillance
video and standard action-recognition corpora. Most
time is spent showing people engaged in dialog rather
than performing actions. Thus we contend that the
false negative rate is very low. Moreover, we contend
that chance performance on this retrieval task is also
very low. This is further supported by the extreme low
performance of the baseline from Section 6.3. Thus we
contend that the underlying retrieval task is difficult and
the performance of our method as described in Section 6.2
is good. Moreover, we have annotated negatives for the
smaller experiment in Section 6.1 which allowed us to
compute chance performance and demonstrate that our
method far exceeds such.

In the future, one can imagine scaling our approach
along a variety of axes: larger and more varied video
corpora, a larger lexicon of nouns, verbs, adjectives,
adverbs, and prepositions, and a more complex query
grammar. Let us consider the advances needed to achieve
such scaling.

Scaling the size of the video corpus is easy. For a
fixed-size query language, processing time and space
is linear in the corpus size. Further, such processing is
trivially parallelizable and, as discussed in Section 5,
many components of the process, such as object detection,
can be precomputed and cached in a query-independent
fashion. Moreover, as discussed in Section 5, results
of earlier queries can be cached and used to speed
up processing of later queries, potentially leading to
reduction of the search complexity below linear time.

Scaling up to support a larger lexicon of nouns, largely
depends on the state-of-the-art in object detection. While
current methods appear to work well only for small
numbers of object classes, recent work by Dean et al. [36]
has shown that object detection may scale to far larger
collections of objects. Since our method simply requires
scored detections, it can avail itself of any potential future
advances in object detection, including combining the
results of multiple detection methods, potentially even
for the same object class as part of the same object track.

Scaling up to support a larger lexicon of verbs also
appears possible. Our approach performs event recog-
nition on time series of feature vectors extracted from
object tracks. This general approach has already been
demonstrated to scale to 48 distinct event classes [29].
However, this can only be used for verbs and other
parts of speech whose meanings are reflected in motion
profile: the changing relative and absolute positions,
velocities, and accelerations of the event participants.
Scaling beyond this, to encode the meanings of words
like sit, pour, build, or break, or semantic distinctions like
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Query our TP baseline TP

The person rode the horse. 9 0
The person lead the horse. 1 0
The person approached the horse. 4 1

Fig. 9. A comparison between our approach and a baseline system constructed out of state-of-the-art components on
the top 10 hits returned for various sentential queries.

(a) (b) (c)

Fig. 10. (a) Average precision of the top 10 hits for the 141 query sentences as a function of the threshold on the
sentence-tracker score. Without a threshold, (b) the number of sentences with at most the given number of hits and
(c) the number of sentences with at least the given number of correct hits.

the difference between abandon and leave or between
follow and chase, would require modeling facets of human
perception and cognition beyond motion profile, such as
body posture [37], functionality, intention, and physical
processes.

Scaling sentence length and complexity requires lattices
of greater width. The dynamic-programming algorithm
which performs inference on the sentence-tracker lattice
takes time quadratic in the width of the cross-product lat-
tice. Unfortunately the width of this cross-product lattice
increases exponentially in the number of participants and
the query-sentence length. While this approach will not
scale indefinitely, it is able to process our current queries
with three participants and 6-14 words with an acceptable
runtime, a few dozen seconds per clip. Scaling further will
require either a faster dynamic-programming algorithm
or inexact inference. Barbu et al. [28] present an algorithm
which employs Felzenszwalb and Huttenlocher’s [38]
generalized distance transform to perform inference in
linear time in the lattice width, as opposed to quadratic
time, for a one-word sentence tracker. Such an approach
can be generalized to an entire sentence tracker but
carries the added weight of restricting the form of the
features that are extracted from tracks when formulating
the per-state predicates in the event model. At present,
the constant-factor overhead of this approach outweighs
the reduced asymptotic complexity, but this may change
with increased query-sentence complexity. Alternatively
one might perform inexact inference using beam search
to eliminate low-scoring lattice regions. Inexact inference
might also employ sampling methods such as MCMC.
Lazy Viterbi [39] offers another alternative which main-
tains the optimality of the algorithm but only visits nodes
in the lattice as needed.

8 CONCLUSION

We have developed an approach to video search which
takes as input a video corpus and a sentential query.
It generates a list of results ranked by how well they
depict the query sentence. This approach provides two
novel video-search capabilities. First, it can encode the
semantics of sentences compositionally, allowing it to
express subtle distinctions such as the difference between
The person rode the horse and The horse rode the person. Such
encoding allows it to find depictions of novel sentences
which have never been seen before. Second, it extends
video search past nouns and verbs allowing sentences
which can encode modifiers such as adverbs and entire
prepositional phrases. Unlike other approaches which
allow for textual queries of images or videos, we do not
require any prior video annotation. The entire lexicon
shares a small number of parameters and, unlike previous
work, this approach does not need to be trained on every
word or even every related word. We have evaluated
this approach on a large video corpus of 10 Hollywood
movies, comprising roughly 20 hours of video, by running
141 sentential queries.
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(a) The horse approached the person.

(b) The person approached the horse.

Fig. 11. Frames from the top 6 hits for two sentential queries. True positives are shown in green and false positives in
red. In both cases, half are true positives1. The fact that the results are different shows that our method encodes the
meaning of the entire sentence along with which object fills which role in that sentence.
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