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Abstract

Recognizing human activities in partially observed
videos is a challenging problem and has many practical ap-
plications. When the unobserved subsequence is at the end
of the video, the problem is reduced to activity prediction
from unfinished activity streaming, which has been studied
by many researchers. However, in the general case, an un-
observed subsequence may occur at any time by yielding a
temporal gap in the video. In this paper, we propose a new
method that can recognize human activities from partially
observed videos in the general case. Specifically, we formu-
late the problem into a probabilistic framework: 1) divid-
ing each activity into multiple ordered temporal segments,
2) using spatiotemporal features of the training video sam-
ples in each segment as bases and applying sparse coding
(SC) to derive the activity likelihood of the test video sam-
ple at each segment, and 3) finally combining the likelihood
at each segment to achieve a global posterior for the ac-
tivities. We further extend the proposed method to include
more bases that correspond to a mixture of segments with
different temporal lengths (MSSC), which can better rep-
resent the activities with large intra-class variations. We
evaluate the proposed methods (SC and MSSC) on various
real videos. We also evaluate the proposed methods on two
special cases: 1) activity prediction where the unobserved
subsequence is at the end of the video, and 2) human ac-
tivity recognition on fully observed videos. Experimental
results show that the proposed methods outperform existing
state-of-the-art comparison methods.

1. Introduction

Human activity recognition aims at building robust and
efficient computer vision algorithms and systems which can
automatically recognize specific human activities from a se-
quence of video frames. Its applications include security,
surveillance and human-computer interaction, etc. Early
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research on this problem [, 5, 13, 11, 18] focused on a
single person’s simple actions, such as walking, running,
and hopping. Recently, research on activity recognition has
been extended to more complex activity scenarios which in-
volve multiple persons interacting with each other or ob-
jects [15, 20, 24].

One widely used approach for human activity recog-
nition is to train and classify the spatiotemporal features
extracted from videos with different activities. Inspired
by successful 2D scale-invariant image feature descrip-
tors [12, 3], a variety of spatiotemporal feature detec-
tors/descriptors have been developed [11, 5, 7, 10, 21, 22],
and their robustness and effectiveness have been demon-
strated in several successful human activity recognition
methods [5, 13, 11, 18, 15, 14, 20, 9, 19]. In these meth-
ods, a sequence of 2D video frames are treated as a 3D XYT
video volume in which interest points are located by finding
local maxima in the responses of the feature detector, fol-
lowed by calculating vectorized feature descriptors at each
interest point. By using the bag-of-visual-words technique,
spatiotemporal features within a video can be combined into
a feature vector that describes the activity presented in the
video.

(a) Human activity recognition from fully observed videos: What is this activity?

Full Observation

(b) Human activity recognition from partially observed videos — prediction: What is this activity?

Observation Missing observation

(¢) Human activity recognition from partially observed videos — gapfilling: What is this activity?

Observation Missis bservation — Observation
Figure 1. An illustration of the human activity recognition from
fully and partially observed videos.

Previous research on human activity recognition usually
focused on recognizing activities after fully observing the
entire video, as illustrated in Fig. 1(a). However in prac-



tice, partially observed videos may occur when video sig-
nals drop off, cameras or objects of interest are occluded,
or videos are composited from multiple sources. The unob-
served subsequence may occur any time with any duration,
yielding a temporal gap as shown in Fig. 1(c). Recognizing
activities in such temporal gaps is of particular importance
in defense and security. For example, one of the four ma-
jor themes in the DARPA Mind’s Eye program' is to handle
such gapped videos for activity recognition.

When the unobserved subsequence is at the end of the
video, the problem is reduced to activity prediction from
unfinished activity streaming, as illustrated in Fig. 1(b). Ac-
tivity prediction has been studied by Ryoo [14]. Another
example of related work on activity prediction is the max-
margin early event detectors (MMED) [6], which try to de-
tect the temporal location and duration of a certain activity
from the video streaming. Recently, Kitani er al. studied
a special activity prediction problem in [8], which tries to
predict the walking path of a person in certain environments
based on historical data. However, activity recognition from
general gapped videos, as shown in Fig. 1(c), has not been
well studied yet. Note that, in general, this is a different
problem from activity prediction because the temporal gap
may divide the video into two disjoint observed video sub-
sequences and we need to combine them to achieve a reli-
able recognition.

In this paper, we propose a probabilistic formulation for
human activity recognition from partially observed videos,
where the posterior is maximized for the recognized activ-
ity class and the observed video frames. In our formulation,
the key component in defining the posterior is the likelihood
that the observed video frames describe a certain class of ac-
tivity. In this paper, we take a set of training video samples
(completely observed) of each activity class as the bases,
and then use sparse coding (SC) to derive the likelihood that
a certain type of activity is presented in a partially observed
test video. Furthermore, we divide each activity into mul-
tiple temporal segments, apply sparse coding to derive the
activity likelihood at each segment, and finally combine the
likelihoods at each segment to achieve a global posterior
for the activity. While video segments are constructed by
uniformly dividing the video in SC, we also extend it to in-
clude more sparse coding bases constructed from a mixture
of training video segments (MSSC) with different lengths
and locations.

Using sparse coding with the constructed bases, the pro-
posed methods can find closest video segments from differ-
ent training videos when matching a new test video. Thus,
the proposed methods don’t require full temporal alignment
between any pair of (training or test) videos, and they can
handle the problems of 1) a limited number of training
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videos; 2) possible outliers in the training video data; and
3) large intra-class variations. We evaluate the proposed
methods on several video datasets and compare their per-
formance with several state-of-the-art methods. In the ex-
periments, we not only evaluate the performance on general
gapped videos, but also on fully observed videos without a
gap and videos with a gap at the end (activity prediction).

The remainder of the paper is organized as follows. In
Section 2, we present our probabilistic formulation of hu-
man activity recognition from partially observed videos.
Section 3 introduces the likelihood component using a
sparse coding (SC) technique followed by extending the
SC to include more bases constructed from a mixture of
segments (MSSC) with different temporal lengths. Exper-
imental results and discussions are presented in Section 4,
followed by conclusions in Section 5.

2. Problem Formulation

2.1. Human Activity Recognition from a Fully Ob-
served Video

Given a fully observed video O[1 : T of length T,
where O[t] indicates the frame at time ¢, the goal is to
classify the video O[1 : T into one of P activity classes
A = {A,},p = 1,...,P. A human activity is usually
made up of a sequence of simpler actions, each of which
may contain different spatiotemporal features. Therefore,
we can divide the video O[1 : T into a sequence of shorter
video segments for spatiotemporal feature extraction. For
simplicity, we uniformly divide the video O[1 : T] into M
equal-length segments, where each segment O(t;—1 : t;],
with t; = %, corresponds to the i-th stage of the activity,
with ¢ = 1,2,-.- M. For different videos, the length T'
might be different, and therefore the segments from differ-
ent videos may have different lengths.

The posterior probability that an activity .A,, is presented
in the video O[1 : T can be defined as P(A,|O[1 : T1),
which can be rewritten as:

M

P(A,|O[1:T]) ZP(AW (tioy : t]|O[1: T))
o =1
x ZP(AP, (tioy : t:]))P(O[1 : T)| Ay, (ti_1 : t:]).

e))
In this formulation, P(A,, (t;—1 : t;]) is the prior of stage ¢
of activity A, and P(O[1 : T1|A,, (t;—1 : t;]) is the obser-
vation likelihood given activity class A, in the i-th stage.
Then the index of the recognized activity is

M

* = P ti, Zti .
p' = argmax 3 P(Ay, (s 4] o

P(O[l : T“Ap, (ti—l : tl])


http://www.darpa.mil/Our_Work/I2O/Programs/Minds_Eye.aspx
http://www.darpa.mil/Our_Work/I2O/Programs/Minds_Eye.aspx

2.2. Human Activity Recognition from a Partially
Observed Video

A partially observed video can be represented by O[1
Ty] U [Ty : T, where frames O(T} : T3) are missing, as
illustrated in Fig. 2. For simplicity, we assume that 7} is
always the last frame of a segment and 7T is always the first
frame of another segment. Otherwise, we can intentionally
decrease T} to a nearest last frame of a segment and increase
T5 to a nearest first frame of a segment.

un—observed subsequence

observation O[1:T] observation O[T:T]

frame 1 frame T, frame T, frame T
L 1] e o o L
segment 1 segment 2 segment M

Figure 2. An illustration of a partially observed video (general
case), where the unobserved subsequence is located in the middle
of the video.

By following the formulation in Eqn. (1), the posterior
probability that an activity A, is presented in this partially
observed video can be defined as:

P(A,|OL: TH|UO[T, : T])
wi Y P(Ap (tioy : 4]|O[1: Th))

it <T (3)
twy Y P(Ap, (tio1 : 6]|O[Ty : T)),
i|t;_1>To
where w; = ﬁ and wy = % reflect the

proportionality between the length of O[1 : T7] and O[T :
T). We can rewrite this as:

P(AO1 :TH|UO[T, : T)
wi Y P(Ay, (ticy : ) P(O[L: Ty]| Ay, (i1 < 1))

i|ti§T1

twy Y P(Ap, (tio1 : ti]) P(O[Ty
i|ti—1>T>

“)
The index of the recognized activity is therefore:

p* = argmanP(ApKQ[l :TUOTL:T)).  (5)

Notably, when 75 — 1 = T the problem is reduced to its
special case — activity prediction. When 77 = T, the prob-
lem is degenerated to the classic human activity recognition
from fully observed videos. In practice, we can assume that
the prior of A, on each segment satisfies a uniform distri-
bution, without favoring any special activity. We introduce
the calculation of the likelihood component in the following
section.

T Ap, (ti-1 = ).

3. Likelihood
3.1. Likelihood calculation using sparse coding

Without loss of generality, in this section, we only
consider the calculation of the likelihood P(O[1 :
T1H.Ap,(ti_1 : ti]), since P(O[ H.Ap,( i—1 - tzD
can be calculated in a similar way. The basic idea is to
collect a set of training videos (completely observed) for
activity class A4, and then define the likelihood P(O[1
T1]|Ap, (ti—1 : t;]) by comparing O[1 : T3] with the i-
th segment of all the training videos. For each segment of
a video, we use the bag-of-visual-words technique to or-
ganize its spatiotemporal features into a fixed-dimensional
feature vector. For the ¢-th segment of the n-th training
video, we denote its feature (row) vector, after applying the
bag-of-visual-words technique, as h. For the test video
O[1 : Ty], we also extract such a feature for stage ¢ to be
hO.

One intuitive way to define the likelihood P(O[1
T1]|Ap, (ti—1 : t;]) is to first construct a mean feature vec-
tor, as used in [14], h; = % 227:1 h? for the i-th stage
over all IV training videos in class .A,,. Then, the likelihood
P(O[1: T1]|Ap, (ti—1 : t;]) can be defined as:

1 —In—h;|?
P(O[l : Tl]‘AZN (tifl : ti]) = \/ﬁe 207 ) (6)

where |hY — h;|| represents the distance between the ob-
served feature and the mean feature from the training video
dataset in stage .

However, simply using the mean feature vector as the
unique activity model may suffer from two practical limita-
tions. First, when the number of training videos is limited,
the mean feature may not be a representative of the true
‘center’ of its activity class in feature space. Second, when
outliers are accidentally included in the training dataset, e.g.
the activity label for a training video is actually incorrect or
one training video shows a large difference from the other
training videos in the same activity class, the mean feature
vector may not well represent the considered activity.

To alleviate these limitations, we propose to take feature
vectors from training data as bases, with which we can use
sparse coding to approximate features extracted from the
testing (partially observed) video. The reconstruction error
from sparse coding is used to replace the feature distance in
Eqn. (6) for likelihood calculation.

Specifically, for segment ¢, we construct the bases ma-
trix A; using the segment-¢ feature vectors from N training
videos:

A; = e )



Then the reconstructed sparse representation of h® can be
written as fl? = A;x*, where x* is the linear combination
coefficients of the sparse coding representation which can
be derived by solving the following minimization problem:

x* = min||hY — hY|” + Alx]lo. (8)

This minimization problem can be approximated by replac-
ing the term ||x||o with ||x||; and then solved by L' mini-
mization toolboxes such as [23, 2]. In this paper, we choose
toolbox [23]. In particular, we use its Orthogonal Match-
ing Pursuit (OMP) implementation. The original likelihood
equation Eqn. (6) can then be rewritten as:

1 — B — A" 2
5 5 e 202
Vano
©)

By using the sparse coding as described above, the pro-
posed SC method can automatically select a proper subset
of bases for approximating the test video segments. This
way, it can exclude outliers in the training set for likelihood
calculation. In addition, for different video segments in the
test video, the proposed SC method can identify segments
from different training videos and use their linear combi-
nation for representing a test video segment. Compared to
the mean activity model, the proposed method can substan-
tially decrease the approximation error and to some extent,
alleviate the problem of limited number of training videos.
Note that, in the proposed method, different test videos and
different segments from a test video will identify different
bases and different coefficients for likelihood calculation.
This is different from the support vector machine (SVM)
classifiers where the support vectors (analogue to selected
bases in SC) are fixed when the training is finished. In the
experiments, we will show that the proposed SC method
outperforms MMED [6], a structured SVM based method,
on the activity prediction task.

P(O[l : Tl]‘Ap, (ti—l : fi]) =

3.2. Likelihood calculation using sparse coding on
a mixture of segments

It is well known that, in practice, humans perform ac-
tivities with different paces and overhead time. These phe-
nomena introduce temporal intra-class variations. To han-
dle such variations, we further extend SC to MSSC by in-
cluding more bases that are constructed from a mixture of
segments with different temporal lengths and temporal lo-
cations in the training videos.

More specifically, when calculating the likelihood of
segment ¢ of the test video, we not only take segment
(t;—1,t;] in the training video to construct a basis, but
also take 8 segments in each training video to construct
8 more bases. As illustrated in Fig. 3, we take the j-
th training video as an example. These 8 more segments
are (ti—o,ti—1], (ti, tiga], (tiz2, ts)s (tiz1,tiga)s (tima,ta],

segment i—1 segmenti segment i+l

test video { . . .

shorter segments

j—th training
video

longer segments
Figure 3. An illustration of a mixture of segments with different
temporal lengths and shifted temporal locations.

(tict tic1 + (ts —tiz1)/2], (ticy + (ts — ti—1)/2,t;], and
(tq;_l + (tz - ti_l)/4,t7; — (ti — ti—l)/4]7 which are all
around segment (¢;_1,;], but with varied segment lengths
and small temporal location shifts. We expect that these ad-
ditional bases can better handle the intra-class activity vari-
ation by approximating the test video segments more accu-
rately.

4. Experiments

We test the proposed SC and MSSC methods on three
human activity recognition tasks: 1) the special case — activ-
ity prediction, where the video gap is at the end of the video;
2) the general case — gapfilling, where the gap separates two
observed subsequences; and 3) the degenerate case — full
video recognition, where there is no gap along the video.
Each task is evaluated on real datasets with different chal-
lenge levels. We implement the proposed methods in MAT-
LAB, and use the Cuboids descriptors [5] as spatiotemporal
features. We use the bag-of-visual-words technique to orga-
nize spatiotemporal features, in which a codebook with 800
words is generated by K -means clustering. In experiments,
we consistently set M = 20, i.e., each activity (and each
video) is uniformly divided into 20 temporal segments. We
set ¢ = 6 (in Eqn. (9)) and A = 102 (in Eqn. (8)) for the
proposed methods throughout the three recognition tasks.

We choose several state-of-the-art comparison methods,
including Ryoo’s human activity prediction methods (both
non-dynamic and dynamic versions) [14], early event de-
tector — MMED [6], C2 [7], and Action Bank [17]. Based
on their applicability, we apply these methods (adapted if
necessary) on all or a part of the three recognition tasks,
which will be further explained in following sections. We
also implement a baseline sparse coding (named after ‘base-
line’) method which concatenates features from different
segments of a training video into a single feature vector as
one row of the basis matrix and then directly applies sparse
coding for recognition. More specifically, a (partially ob-
served) test video is classified into an activity class that
leads to the smallest reconstruction error. Furthermore, in
order to clarify that the proposed SC and MSSC methods
can perform better than voting methods which share a sim-
ilar idea of using a subset of training samples for classifica-
tion, we implement a KNN (K Nearest Neighbor) algorithm



as another comparison method. Specifically, against each
training video, we apply Ryoo’s methods (non-dynamic and
dynamic versions) to calculate the posterior of the test (par-
tially observed) video and then identify the K (/K is the
number of training videos in the same activity class) train-
ing videos against which the test video has largest posteri-
ors. This way, we can apply a simple majority voting to the
activity classes of K nearest training videos to classify the
test video.

4.1. Evaluation on the special case: prediction

In the prediction task, we simulate incremental ar-
rival of video frames (represented by observation ratio
[0.1,0.2,...,1.0]) as in [14], and evaluate the performance
for each observation ratio. Ryoo’s methods, the KNN meth-
ods, MMED and the baseline sparse coding method are se-
lected for comparison since they can handle prediction.

For Ryoo’s methods, since the original codes are not
available publicly, we implement them by following [14].
And by tuning parameters in our implementation, we ac-
tually achieve comparable or even better performance than
those reported in [14]. For MMED method, we use its pub-
lished code and follow the settings in [6]. When recogniz-
ing a test video O, it is concatenated with other test videos
from other activity classes into a long video, with O at the
end. MMED returns a subsequence in this long video. To
adapt MMED from early event detection to human activity
prediction, we set its minimum searching length to be the
temporal length of O, and the step length of the searching
to be identical to the segment length in the proposed SC
method. If the subsequence returned by MMED contains
no less than 50% of the frames in the observed subsequence
in O, it is counted as a correct prediction.

We have three datasets for evaluating prediction: UT-
interaction #1, UT-interaction #2 [16] and DARPA Y1, a
subset of videos from the Year-1 corpus of the DARPA
Mind’s Eye program [4]. In DARPA Y1, each video shows
one of the 7 human activities: ‘fall’, ‘haul’, ‘hit’, ‘jump’,
‘kick’, ‘push’ and ‘turn’. For each activity class, we collect
20 videos. DARPA Y1 is much more complex than the UT-
interaction datasets in that 1) actor size in the same activity
class varies significantly in different videos; 2) the overhead
time for an activity varies from one video to another; 3) ac-
tivities are recorded from different camera perspectives; 4)
activity pace varies in different videos; and 5) backgrounds
are more complex due to shadows and non-uniform illumi-
nations.

As in [14], we use the leave-one-out cross validation for
performance evaluation. There are 10 folds of cross valida-
tions on UT-interaction #1, #2; 20 folds of cross validations
on DARPA Y. For each test video, the result is a single hu-
man activity class out of all possible activities classes and
we use the average accuracy over all cross validation tests

and all activity classes as a quantitative metric of the perfor-
mance.

Figure 4 shows the prediction results on these three test
datasets. We can see that, the proposed SC and MSSC
methods show comparable or better performance on these
three datasets, especially on DARPA Y1 and when the ob-
servation ratio is not overly small. The baseline sparse cod-
ing method achieves good performance (close to SC and
MSSC) on UT-interaction #1, #2 but not in DARPA Y1
because the activities in UT-interaction datasets show very
small intra-class variations, while the proposed methods can
better handle the large intra-class variations. MMED per-
forms not as good as other methods because MMED is orig-
inally designed for early event detection, with a goal of lo-
calizing the starting and ending frames of an activity and
this is different from the prediction task in this experiment,
where our goal is to recognize the activity from a given ob-
served subsequence.

4.2. Evaluation on the general case: gapfilling

In the gapfilling task, we compare the proposed SC
and MSSC methods with adapted Ryoo’s methods (non-
dynamic and dynamic versions), KNN (non-dynamic and
dynamic versions) and the baseline sparse coding method.
Specifically, we adapt Ryoo’s methods to perform activ-
ity prediction on these two subsequences, and the gapfill-
ing posterior score is the summation of prediction posterior
scores on each observed subsequence. We use the same pa-
rameter setting for adapted Ryoo’s methods as used in the
prediction task.

We first perform gapfilling evaluation on UT-interaction
#1,#2 and DARPA Y1 datasets. We intentionally replace a
subsequence of frames from a test video by empty frames
to create a partially observed video. To have a more reliable
performance evaluation, we try different lengths and differ-
ent temporal locations of empty subsequences for each test
video. Specifically, for each test video O[1 : T}, we con-
struct a non-observation interval (8,7 : 82T, where

(81, P2) ={[0.1,0.2,--- ,0.9] x [0.2,0.3,---,0.9]},

(10)
and 81 < (2. We further define non-observation ratio as
B = [ — 1 which varies from 0.1 to 0.8 with the step of
0.1 according to Eqn. (10). We finally evaluate the accu-
racy rate in term of each possible non-observation ratio B
by counting the percentage of the correctly recognized test
videos with the non-observation ratio B over all folds (10
folds for UT-interaction #1, #2; 20 folds for DARPA Y1) of
cross validations.

As shown in Fig. 5, we achieve a similar performance
ranking as in the prediction evaluations. The proposed SC
and MSSC methods achieve comparable or better perfor-
mance when the gap ratio is not overly large. On the more
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Figure 4. Prediction results on three datasets: (a) UT-interaction #1; (b) UT-interaction #2; and (c) DARPA Y1.
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Figure 5. Gapfilling results on three datasets: (a) UT-Interaction #1; (b) UT-interaction #2; and (c) DARPA Y1.

complex DARPA Y1 dataset, the proposed methods clearly
achieve better performance.

We further evaluate the proposed methods and com-
parison methods on more complex datasets: The DARPA
Mind’s Eye program provides a Year-2 evaluation corpus,
which contains 4 sub-datasets of long test videos (each
video has a length more than ten minutes) with multiple
gaps. For brevity, we name this dataset as DARPA Y2-
Gapfilling and the four sub-datasets are ‘gapfilling short
duration’, ‘gapfilling long duration’,‘gapfilling natural de-
scription’, and ‘gapfilling natural recognition’, respectively.
This dataset is much more challenging than DARPA Y1
dataset due to: 1) the important action units are missing
for the underlying activities in many cases; and 2) many
activities are performed simultaneously by multiple actors.
In DARPA Y2-Gapfilling, there are in total 267 gaps, with
length from 122 to 2, 239 frames.

DARPA Mind’s Eye program also provides three train-
ing sets (different from DARPA Y2-Gapfilling) to learn the
model for each activity. These three training sets are ‘C-
D2b’ (22 activity classes, totally 3,819 training videos),
‘C-D2¢’ (16 activity classes, totally 2,80 training videos)
and ‘C-D2bc’ (23 activity classes, totally 4,409 training
videos). We perform the proposed and comparison methods
on all videos in DARPA Y2-Gapfilling with respect to these

three training datasets, respectively. In our experiment, for
each gap in DARPA Y2-Gapfilling, we construct test video
clips by including a certain number of observed frames be-
fore and/or after this gap. For each gap, nine video clips
are constructed with the gap appearing ‘at the beginning’,
‘in the center’ or ‘at the end’ of the video clip and counting
for 20%, 40% or 60% of the clip length. This way, we con-
struct a total of 2,403 video clips with a gap and evaluate
the recognition results against the human annotated ground-
truth (may give multiple activities labels for a test gapped
video clip). Precision-recall results (obtained by threshold-
ing the posteriors) are shown in Fig. 6. We can see that the
proposed SC and MSSC methods outperform the compari-
son methods in most of the test clips. However, the general
performance is low, which indicates that the gapfilling on
practical scenarios is far from a solved problem.

4.3. Evaluation on degenerate case: full-video

recognition

For full-video recognition, we compare the proposed
SC and MSSC methods with the baseline sparse coding,
Ryoo’s methods (non-dynamic and dynamic versions), C2
and Action Bank. Previous published recognition meth-
ods are mostly evaluated on short video clips where each
of them contains a single activity, which cannot reflect real
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Figure 6. Gapfilling results on DARPA Y2-Gapfilling dataset. Row 1, 2 and 3 show the results by training on ‘C-D2b’, ‘C-D2c¢’ and
‘C-D2bc’, respectively. Column 1, 2, 3 and 4 show the results on ‘gapfilling short duration’, ‘gapfilling long duration’, ‘gapfilling natural

description’, and ‘gapfilling natural recognition’, respectively.

performance in the practical scenarios. Thus, besides the
full video recognition results on UT-interaction #1,#2 and
DARPA Y1 provided in prediction task (see Fig. 4 at obser-
vation ratio 1.0), we further test these methods on DARPA
Year-2 Recognition, a dataset provided by the DARPA
Minds’ Eye program for large-scale activity recognition
evaluation. DARPA Year-2 Recognition contains 3 sub-
datasets: ‘description free form’, ‘description scripted’, and
‘recognition’. DARPA Y2-Recognition is very challenging
because 1) the length of each video is around (mostly larger
than) ten minutes (more than one and half hours in total);
and 2) a large number of subsequences contain unrelated
moving objects in the background.

We break the long video into partially overlapping short
clips using sliding windows for activity recognition. For the
proposed SC and MSSC methods, Ryoo’s methods (non-
dynamic and dynamic versions), and the baseline sparse
coding method, we calculate the posteriors of each activ-
ity presented in each short clip. We normalize the pos-
terior scores that an activity is present in each short clip
and label the video clip with the activities that have pos-
terior scores larger than a pre-set threshold 7. In the ex-
periments, we choose 7 = 0.05 and C-D2b as the train-
ing set. For C2 and Action Bank methods, we use their
default parameters to detect activities in each constructed

video clip. We check the overlap between the sliding win-
dow with the recognized activities and the ground-truth la-
beling of the activities (starting and ending frames) using
the intersection/union ratio. Given the identical activity la-
bel, we threshold this overlap ratio to get precision/recall
values and then combine them into a Fj-measure, which
is shown in Table 1. As shown in the table, the proposed
SC, MSSC and baseline sparse coding methods achieve rel-
atively better performance on two different ground-truth la-
belings. However, the general performance is very low and
this indicates that there is still a long way to go to achieve
good activity recognition in practical scenarios.

5. Conclusion

In this paper, we proposed novel methods for recogniz-
ing human activities from partially observed videos. We
formulated the problem as a posterior-maximization prob-
lem whose likelihood is calculated on each activity tempo-
ral stage using a sparse coding (SC) technique. We further
include more sparse coding bases for a mixture of varied-
length and/or varied-location segments (MSSC) from the
training videos. We evaluated the proposed SC and MSSC
methods on three tasks: activity prediction, gapfilling and
full-video recognition. The experimental results demon-
strate that the proposed methods produce better perfor-



Fi-measures evaluated against ground-truth I

Test datasets ‘description free form’ ‘description scripted’ ‘recognition’
Overlap thresholds 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7
Ryoo’s dynamic 0.81% | 0.68% | 0.54% | 0.33% 8.6% 8.6% 8.6% 8.6% 0.9% | 0.67% | 0.49% | 0.28%
Ryo0’s non-dynamic 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
baseline 1.24% | 1.11% | 0.83% | 0.53% | 15.45% 15% 14.09% | 13.64% | 1.09% | 0.89% | 0.72% | 0.48%
MSSC 1.04% | 0.92% | 0.71% | 0.46% | 10.97% | 10.97% | 10.47% | 9.98% 1% 0.84% | 0.68% | 0.45%
SC 1.23% | 1.10% | 0.82% | 0.53% | 16.39% | 15.85% | 14.75% | 14.21% | 1.09% | 0.90% | 0.75% | 0.5%
C2 0.52% | 0.26% | 0.26% | 0.26% 0% 0% 0% 0% 0% 0% 0% 0%
Action Bank 0.38% 0% 0% 0% 0.53% 0.18% 0.18% 0.18% | 0.25% | 0.25% | 0.25% | 0.25%
F-measures evaluated against ground-truth 11
Test datasets ‘description free form’ ‘description scripted’ ‘recognition’
Overlap thresholds 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7
Ryoo’s dynamic 0.77% | 0.66% | 0.49% | 0.26% | 6.52% 4.35% 4.35% 4.35% | 0.98% | 0.74% | 0.52% | 0.29%
Ryoo’s non-dynamic 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
baseline 0.93% | 0.8% | 0.65% | 0.41% | 6.83% 6.38% 5.92% 547% | 1.14% | 0.99% | 0.8% | 0.51%
MSSC 0.85% | 0.72% | 0.56% | 0.37% 6% 5.5% 5.5% 5% 1.06% | 0.93% | 0.74% | 0.46%
SC 0.91% | 0.8% | 0.65% | 0.42% | 7.12% 6.58% 6.03% 548% | 1.13% | 0.99% | 0.8% 0.5%
Cc2 0.97% | 0.32% 0% 0% 5.26% 5.26% 3.51% 1.75% 0% 0% 0% 0%
Action Bank 0.67% | 0.67% | 0.22% 0% 0.78% 0.59% 0.39% 0.2% 0.72% | 0.48% | 0.48% | 0.24%

Table 1. Recognition results on DARPA Y2-Recognition dataset. The best F'1-measures on each test dataset at each overlap threshold are
highlighted. The top and bottom tables show the results on two different sets of ground-truth labeling constructed manually.

mance than many state-of-the-art methods when the test
datasets are complex. In contrast to many previous ap-
proaches, we conducted experiments on complex datasets
that reflect practical scenarios. The results show that there
is still a long way to go to achieve satisfactory recognition
on such data.
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