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Abstract—We present an approach to searching large video corpora for clips which depict a natural-language query in the form of a

sentence. Compositional semantics is used to encode subtle meaning differences lost in other approaches, such as the difference

between two sentences which have identical words but entirely different meaning: The person rode the horse versus The horse rode

the person. Given a sentential query and a natural-language parser, we produce a score indicating how well a video clip depicts that

sentence for each clip in a corpus and return a ranked list of clips. Two fundamental problems are addressed simultaneously: detecting

and tracking objects, and recognizing whether those tracks depict the query. Because both tracking and object detection are unreliable,

our approach uses the sentential query to focus the tracker on the relevant participants and ensures that the resulting tracks are

described by the sentential query. While most earlier work was limited to single-word queries which correspond to either verbs or

nouns, we search for complex queries which contain multiple phrases, such as prepositional phrases, and modifiers, such as adverbs.

We demonstrate this approach by searching for 2,627 naturally elicited sentential queries in 10 Hollywood movies.

Index Terms—Retrieval, video, language, tracking, object detection, event recognition, sentential video retrieval
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1 INTRODUCTION

VIDEO search engines lag behind text search engines in
their wide use and performance. This is in part because

themost attractive interface for finding videos remains a natu-
ral-language query in the form of a sentence but determining
if a sentence describes a video remains a difficult task. This
task is difficult for a number of different reasons: unreliable
object detectors which are required to determine if nouns
occur, unreliable event recognizers which are required to
determine if verbs occur, the need to recognize other parts of
speech such as adverbs or adjectives, and the need for a repre-
sentation of the semantics of a sentence which can faithfully
encode the desired natural-language query. We propose an
approach which simultaneously addresses all of the above
problems. Most approaches to date attempt to independently
address the various aspects that make this task difficult. For
example, they usually attempt to separately find videos that
depict nouns and videos that depict verbs and essentially take
the intersection of these two sets of videos. This general
approach of solving these problems piecemeal cannot repre-
sent crucial distinctions between otherwise similar input
queries. For example, if you search for The person rode the horse
and for The horse rode the person, existing systems would give
the same result for both queries as they each contain the same
words, but clearly the desired output for these two queries is
very different. We develop a holistic approach which both
combines tracking and word recognition to address the prob-
lems of unreliable object detectors and trackers and at the

same time uses compositional semantics to construct the
meaning of a sentence from the meaning of its words in order
tomake crucial but otherwise subtle distinctions between oth-
erwise similar sentences. Given a grammar and an input sen-
tence, we parse that sentence and, for each video clip in a
corpus, we simultaneously track all objects that the sentence
refers to and enforce the constraint that all tracks must be
described by the target sentence using an approach called
the sentence tracker. Each video is scored by the quality of its
tracks,which are guaranteed by construction to depict our tar-
get sentence, and the final score correlates with our confi-
dence that the resulting tracks correspond to real objects in
the video. We produce a score for every video-sentence pair
and returnmultiple video hits ordered by their scores.

In what follows, we describe a system which, unlike most
previous approaches, allows for a natural-language query of
video corpora which have no human-provided annotation.
Given a sentence and a video corpus, we retrieve a ranked list
of videos which are described by that sentence. We show a
method for constructing a lexicon with a small number of
parameters, which are reused among multiple words. We
present a method for combining models for individual words
into a model for an entire sentence and for recognizing that
sentence while simultaneously tracking objects in order to
score a video-sentence pair. To demonstrate this approach,
we run 2,627 natural-language queries on a corpus of 10 full-
length Hollywood movies using a grammar which includes
nouns, verbs, adverbs, and prepositions. This is one of the first
approaches which can search for complex queries which
include multiple phrases, such as prepositional phrases, and
modifiers, such as adverbs.

2 RELATED WORK

In a recent survey of video retrieval, Hu et al. [1] note that
work on semantic video search focuses on detecting nouns
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and verbs, as well as using language to search already-exist-
ing video annotation. The state of the art in image retrieval
is similar [2], [3], [4]. Note that the approach presented here,
by design, would fare poorly on still images as it uses the
fact that the input is a video in order to mutually inform
and constrain object detection, tracking, and event recogni-
tion. Unlike most earlier approaches, the work presented
here requires no pre-existing annotations.

Retrieving clips or frames in which a query object occurs
has been addressed both using query-by-example and
object detection. Sivic and Zisserman [5] present a statistical
local-feature approach to query-by-example. A bounding
box is placed around a target object, and frames in which
that object occurs are retrieved. Unlike the work presented
here, this search is not performed using an object detector,
but instead relies on detecting regions with similar statisti-
cal features. Moreover, it does not exploit the fact that the
input is a video, and instead treats each frame of the video
independently. Yu et al. [6] detect and track a single object,
a soccer ball, and recognize actions being performed on that
object during a soccer match. They extract gross motion fea-
tures by examining the position and velocity of the object in
order to recognize events and support a small number of
domain-specific actions limited to that specific single object.
Anjulan and Canagarajah [7] track stable image patches to
extract object tracks over the duration of a video and group
similar tracks into object classes. Without employing an
object detector, these methods cannot search a collection of
videos for a particular object class but instead must search
by example. Byrne et al. [8] employ statistical local features,
such as Gabor features, to perform object detection. These
do not perform as well as more recent object detectors on
standard benchmarks such as the PASCAL Visual Object
Classes (VOC) Challenge [9]. Sadeghi and Farhadi [10] rec-
ognize objects, in images, in the context of their spatial rela-
tions, using an object detector. They train an object detector
not just for an object class, but for a combination of multiple
interacting objects. This allows them to detect more complex
scenarios, such as a person riding a horse, by building
targeted object detectors. Moreover, knowledge of the target
scenario improves the performance of the object detector.
Similarly, in our work, knowledge about the query impro-
ves the performance of each of the individual detectors for
each of the words in the query. But their approach differs
fundamentally from the one presented here because it is not
compositional in nature. In order to detect The person rode
the horse, one must train on examples of exactly that entire
sentence, whereas in the work presented here, independent
detectors for person, horse, and rode combine together to
encode the semantics of the sentence and to perform
retrieval of a sentence without any particular training for
that sentence.

Prior work on verb detection does not integrate with
work on object detection. Chang et al. [15] find one of four
different highlights in basketball games using hidden
Markov models (HMMs) and the expected structure of a
basketball game. They do not detect objects but instead clas-
sify entire presegmented clips, are restricted to a small num-
ber of domain-specific actions, and support only single-
word queries. Event recognition is a popular subarea of
computer vision but has remained limited to single-word

queries [16], [17], [18], [19], [20]. We will avail ourselves of
such work later [21] to show that the work presented here
both allows for richer queries and improves on the perfor-
mance of earlier approaches.

Most prior work on more complex queries involving both
nouns and verbs essentially encodes the meaning of a sen-
tence as a conjunction of words, largely discarding the com-
positional semantics of the sentence reflected by sentence
structure. Christel et al. [22], Worring et al. [23], Snoek et al.
[24], and Tapaswi et al. [25] present various combinations of
text search, verb retrieval, and noun retrieval, and essentially
allow for finding videos which are at the intersection of mul-
tiple search mechanisms. Aytar et al. [26] rely on annotating
a video corpus with sentences that describe each video in
that corpus. They employ text-based search methods which
given a query, a conjunction of words, attempt to find videos
of similar concepts as defined by the combination of an ontol-
ogy and statistical features of the videos. Their model for a
sentence is a conjunction of words where higher-scoring vid-
eos more faithfully depict each individual word but the rela-
tionship between words is lost. None of these methods
attempt to faithfully encode the semantics of a sentence and
none of them can encode the distinction between The person
hit the ball and The ball hit the person.

_Ikizler and Forsyth [27], [28] present early work on using
finite-state models as event recognizers and use such to per-
form video retrieval. However, unlike the work presented
here, they only model verbs and not other parts of speech
such as nouns, adverbs, and prepositions, and particularly do
not model how such word meanings combine to form sen-
tence meanings. Lin et al. [29] present an approach to video
retrieval with multi-word sentential queries. Their work dif-
fers from ours, inter alia, in that their semantic representation
only supports unary predicates while ours supports predi-
cates of any arity. Moreover, they adopt what they call the no
coreference constraint so that each object is assigned to at most
one predicate; we have no such restriction. The no coreference
constraint precludes handling the example shown in Fig. 4
because person and horse must be arguments of the verb rode
and at least one of themmust also be an argument of the spa-
tial relation leftward, the adverb quickly, and the preposition
towards. Kiros et al. [30] present an approach for producing
text descriptions of still images and retrieving still images
from a dataset that match multi-word text queries. One major
difference from the work presented here is that Kiros et al.
[30] represent the meanings of words by an association with
visual features and not their truth conditions. Moreover,
unlike the work presented here, they do not formulate a pre-
cise mechanism by which the truth conditions for the words
combine to yield truth conditions for phrases and sentences.
Thus their system can often produce text descriptions that are
not true of the input images.

3 TRACKING

We begin by describing the operation of a detection-based
tracker on top of which the sentence tracker will be con-
structed. To search for videos which depict a sentence, we
must first track objects that participate in the event
described by that sentence. Tracks consist of a single detec-
tion per frame per object. To recover these tracks, we
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employ detection-based tracking. An object detector is run
on every frame of a video, producing a set of axis-aligned
rectangles along with scores which correspond to the
strength of each detection. We employ the Felzenszwalb
et al. [31], [32] object detector, specifically the variant devel-
oped by Sadeghi and Forsyth [33]. There are two reasons
why we need a tracker and cannot just take the top-scoring
detection in every frame. First, there may be multiple
instances of the same object in the field of view. Second,
object detectors are not totally reliable. We overcome both
of these problems by integrating the intra-frame informa-
tion available from the object detector with inter-frame
information computed from optical flow.

We expect that the motion of correct tracks agrees with the
motion of the objects in the video which we can compute sep-
arately and independently of any detections using optical
flow. We call this quantity the motion coherence of a track. In
other words, given a detection corresponding to an object in
the video, we compute the average optical flow inside that
detection, forward-project the detection along that vector,
and expect to find a strong detection in the next frame at that
location. We formalize this intuition into an algorithm which
finds an optimal track given a set of detections in each frame.
For each frame t in a video of length T , each detection j has an
associated axis-aligned rectangle btj and score fðbtjÞ and each

pair of detections in adjacent frames has an associated

motion-coherence score gðbt�1
jt�1 ; b

t
jt
Þ. We formulate the score of

a track j ¼ hj1; . . . ; jT i as

max
j1;...;jT

XT
t¼1

fðbtjtÞ þ
XT
t¼2

gðbt�1
jt�1 ; b

t
jtÞ; (1)

where we take g, the motion coherence, to be a nonincreas-
ing function of the squared Euclidean distance between the

center of bt�1
jt�1 and the center of bt

jt
projected one frame for-

ward. While the number of possible tracks is exponential in
the number of frames in the video, Eq. (1) can be maximized
in time linear in the number of frames and quadratic in the
number of detections per frame using dynamic program-
ming [34], the Viterbi [35], [36] algorithm.

The development of this tracker follows that of Barbu et al.
[37] which presents additional details of such a tracker,
including an extension which allows generating multiple
tracks per object class using non-maximal suppression. That
earlier tracker used the raw detection scores from the
Felzenszwalb et al. [31], [32] object detector. These scores are
difficult to interpret because the mean and variance of scores
varies by object class making it difficult to decide whether a
detection is strong. To get around this problem, we pass all
detections through a sigmoid 1

1þexpð�bðt�aÞÞ whose center, a, is
the model threshold and whose scaling factor b, is 2. This nor-
malizes the score to the range ½0; 1� and makes scores more
comparable across models. In addition, the motion-coherence
score is also passed through a similar sigmoid, with center 50
and scale�1=11.

4 WORD RECOGNITION

Given tracks, we want to decide if a word describes one
or more of those tracks. This is a generalization of event

recognition, generalizing the notion of an event from verbs
to other parts of speech. To recognize if a word describes a
collection of tracks, we extract features from those tracks
and use those features to formulate the semantics of words.
Word semantics are formulated in terms of finite-state
machines (FSMs) which accept one or more tracks. Fig. 2
provides an overview of the FSMs used in Section 7, ren-
dered as regular expressions. This approach is a limiting
case of that taken by Barbu et al. [38] which used hidden
Markov models to encode the semantics of verbs. In
essence, our FSMs are unnormalized HMMs with binary
transition matrices and binary output distributions. This
allows the same recognition mechanism as that used by
Barbu et al. [38] to be employed here.

We construct word meanings in two levels. First, we con-
struct 17 predicates, shown in Fig. 1, which accept one or
more detections. We then construct word meanings for our
lexicon of 15 words, shown in Fig. 2, as regular expressions
which accept tracks and are composed out of these predi-
cates. This two-level construction allows sharing low-level
features and parameters across words. All words share the
same predicates which are encoded relative to nine parame-
ters: far, close, stationary, Dclosing, Dangle, Dpp,
Dquickly, Dslowly, and overlap. To make predicates inde-
pendent of the video resolution, the scale-dependent
parameters far, close, stationary, Dclosing, Dpp, Dquickly,
and Dslowly are scaled relative to a nominal horizontal res-
olution of 1,280 pixels.

Given a regular expression for a word, we can construct a
nondeterministic FSM whose allowable transitions are
encoded by a binary transition matrix a, giving score zero to
allowed transitions and �1 to disallowed transitions, and
whose states accept detections which agree with the
predicate h, again with the same score of zero or �1. With
this FSM, we can recognize if a word describes a track

h|̂1; . . . ; |̂T i, by finding

max
k1;...;kT

XT
t¼1

hðkt; bt|̂tÞ þ
XT
t¼2

aðkt�1; ktÞ; (2)

where k1 through kT range over the set of states of the FSM,

constraining k1 to be an allowed initial state and kT to be an
allowed final state. If this word describes the track, the score
yielded by Eq. (2) will be zero. If it does not, the score will
be �1. The above formulation can be generalized to multi-
ple tracks and is the same as that used by Barbu et al. [37].
We find accepting paths through the lattice of states again
using dynamic programming, the Viterbi algorithm. Note
that this method can be applied to encode not just the mean-
ings of verbs but also of other parts of speech. For example,
the meaning of a static concept, such as a preposition like to
the left of that encodes a temporally invariant spatial rela-
tion, can be encoded as a single-state FSM whose output
predicate encodes that relation. The meaning of a dynamic
concept, such as a preposition like towards that encodes tem-
porally variant motion, can be encoded in a multi-state FSM
much like a verb. It is well known in linguistics that the cor-
respondence between semantic classes and parts of speech
is flexible. For example, some verbs, like hold, encode static
concepts, while some nouns, like wedding, encode dynamic
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concepts. Employing a uniform but powerful representation
to encode the meanings of all parts of speech supports this
linguistic generality and further allows a single but power-
ful mechanism to build up the semantics of sentences from
the semantics of words. This same general mechanism
admits some resiliency to noisy input by allowing one to
construct FSMs with ‘garbage’ states that accept noisy

segments. We avail ourselves of this capacity by incorporat-
ing ttrueþ into many of the word FSMs in Fig. 2.

5 SENTENCE TRACKER

Our ultimate goal is to search for videos described by a
natural-language query in the form of a sentence. The

Fig. 1. Predicates which accept detections, denoted by a and b, formulated around nine parameters. These predicates are used for the experiments
in Section 7. The function project projects a detection forward one frame using optical flow. The functions flow-orientation and flow-magnitude com-
pute the angle and magnitude of the average optical-flow vector inside a detection. The function acx accesses the x coordinate of the center of a
detection. The function awidth computes the width of a detection. The functions [ and \ compute the area of the union and intersection of two detec-
tions respectively. The function j � j� computes angular separation. Words are formed as regular expressions over these predicates.

Fig. 2. Regular expressions which encode the meanings of each of the 15 words or lexicalized phrases in the lexicon used for the experiments in Sec-
tion 7. These are composed from the predicates shown in Fig. 1. We use an extended regular-expression syntax where an exponent of ft; g allows a
predicate to hold for t or more frames.
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framework developed so far falls short of supporting this
goal in two ways. First, as we attempt to recognize multiple
words that constrain a single track, it becomes unlikely that
the tracker will happen to produce an optimal track which
satisfies all the desired predicates. For example, when
searching for a person that is both running and doing so left-
ward, the chance that there may be a single noisy frame that
fails to satisfy either the running predicate or the leftward
predicate is greater than for a single-word query. Second, a
sentence is not a conjunction of words, even though a word
is represented here as a conjunction of features, so a new
mechanism is required to faithfully encode the composi-
tional semantics of a sentence as reflected in its structure.
Intuitively, we must encode the mutual dependence in the
sentence The tall person rode the horse so that the person is
tall, not the horse, and the person is riding the horse, not
vice versa.

We address the first point by biasing the tracker to pro-
duce tracks which agree with the predicates that are
enforced. This may result in the tracker producing tracks
which have to consist of lower-scoring detections, which
decreases the probability that these tracks correspond to
real objects in the video. This is not a concern as we will
present the users with results ranked by their tracker score.
In essence, we pay a penalty for forcing a track to agree
with the enforced predicates and the ultimate rank order is
influenced by this penalty. The computational mechanism
that enables this exists by virtue of the fact that our tracker
and word recognizer have the same internal representation
and algorithm, namely, each finds optimal paths through a
lattice of scored detections, fðbt

jt
Þ, for the tracker, or states

scored by their output predicate, hðkt; bt
jt
Þ, for the word

recognizer, and each weights the links in that lattice by a

score, the motion coherence, gðbt�1
jt�1 ; b

t
jt
Þ, for the tracker, and

state-transition score, aðkt�1; ktÞ, for the word recognizer.

We simultaneously find the track j1; . . . ; jT and state

sequence k1; . . . ; kT that optimizes a joint objective function

max
j1;...;jT

max
k1;...;kT

XT
t¼1

fðbtjtÞ þ
XT
t¼2

gðbt�1
jt�1 ; b

t
jtÞ

 

þ
XT
t¼1

hðkt; btjtÞ þ
XT
t¼2

aðkt�1; ktÞ
!
;

(3)

which ensures that, unless the state sequence for the word
FSM starts at an allowed initial state and leads to an accept-
ing state, the resulting aggregate score will be�1. This con-
strains the track to depict the word and finds the highest-
scoring one that does so. Intuitively, we have two lattices, a
tracker lattice and a word-recognizer lattice, and we find
the optimal path, again with the Viterbi algorithm, through
the cross-product of these two lattices. This lattice construc-
tion is shown in Fig. 3.

The above handles only a single word, but given a sen-
tential query we want to encode its semantics in terms of
multiple words and multiple trackers. We parse an input
sentence with a grammar, shown in Fig. 5, and extract the
number of participants and the track-to-role mapping. Each
sentence that describes an event has a number of roles that
must be filled with entities that serve as participants in that
event. For example, in the sentence The person rode the horse
quickly away from the other horse, there are three participants,
one person and two horses, and each of the three partici-
pants plays a different role in the sentence, agent (the entity
performing the action, in this case the person), patient (the
entity affected by the action, in this case the first horse), and
goal (the destination of the action, in this case the second
horse). Each word in this sentence refers to a subset of these

Fig. 3. Tracker lattices are used to track each participant. Word lattices constructed from word FSMs for each word in the sentence recognize collec-
tions of tracks for participants that exhibit the semantics of that word as encoded in the FSM. We take the cross product of multiple tracker and word
lattices to simultaneously track participants and recognize words. This ensures that the resulting tracks are described by the desired sentence.
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three different participants, as shown in Fig. 4, and words
that refer to multiple participants, such as rode, must be
assigned participants in the correct argument order to
ensure that we encode The person rode the horse rather than
The horse rode the person. We use a custom natural-language
parser which takes as input a grammar, along with the arity
and thematic roles of each word, and computes a track-to-
role mapping: which participants fill which roles in which
words. We employ the same mechanism as described above
for simultaneous word recognition and tracking, except that
we instantiate one tracker for each participant and one
word recognizer for each word. The thematic roles, uiw, map
the ith role in a word w to a tracker. Fig. 4 displays an over-
view of this mapping for a sample sentence. Trackers are
shown in red, word recognizers are shown in blue, and the
track-to-role mapping is shown using the arrows. Given a
sentential query that has W words, L participants, and

track-to-role mapping uiw, we find a collection of tracks

hj11; . . . ; jT1 i; . . . ; hj1L; . . . ; jTLi, one for each participant, and

accepting state sequences hk11; . . . ; kT1 i; . . . ; hk1W; . . . ; kTW i, one
for each word, that optimizes a joint objective function

max
j1
1
;...;jT

1
..
.

j1
L
;...;jT

L

max
k1
1
;...;kT

1
..
.

k1
W
;...;kT

W

XL
l¼1

XT
t¼1

f
�
bt
jt
l

�þXT
t¼2

g
�
bt�1
jt�1
l

; bt
jt
l

�
þ

 

XW
w¼1

XT
t¼1

hw

�
ktw; b

t
jt
u1w

; . . . ; bt
jt
uIw

�
þ
XT
t¼2

aw
�
kt�1
w ; ktw

�!
;

(4)

where aw and hw are the transition matrices and predicates

for word w, bt
jt
l

is a detection in the tth frame of the lth track,

and bt
jt
uiw

connects a participant that fills the ith role in

word w with the detections of its tracker. Since the aggre-
gate score will be �1 if even a single word-recognizer score
would be �1, this equation constrains the subcollection of
tracks that play roles in each of the words in the sentence to
satisfy the semantic conditions for that word, collectively
constraining the entire collection of tracks for all of the par-
ticipants to satisfy the semantic conditions for the entire sen-
tence. Further, it finds that collection of tracks with maximal

tracker-score sum. In essence, for each word, we take the
cross product of its word lattice with all of the tracker latti-
ces that fill roles in that word, collectively taking a single
large cross product of all word and tracker lattices in a way
that agrees with the track-to-role mapping, and find the
optimal path through the resulting lattice. This allows us to
employ the same computational mechanism, the Viterbi
algorithm, to find this optimal node sequence. The resulting
tracks will satisfy the semantics of the input sentence, even
if this incurs a penalty by having to choose lower-scoring
detections.

6 RETRIEVAL

We employ the mechanisms developed above to perform
video retrieval given a sentential query. Given a corpus of
videos, we retrieve short clips which depict a full sentence
from these longer videos. To do so, we use the fact that the
sentence tracker developed above scores a video-sentence
pair. The sentence-tracker score sums the scores of the par-
ticipant trackers and the scores of the word recognizers. As
explained in the previous section, the word-recognizer
score, and thus the sum of all such, is either 0 or �1. This
means that the aggregate sentence-tracker score will be �1
if no tracks can be found which depict the query sentence.
Otherwise, it will simply be the tracker-score sum. This
score indicates our confidence in how well a video depicts a
query sentence, the better the tracker score the more confi-
dent we can be that the tracks correspond to real objects
in the video. The fact that those tracks are produced at all
ensures that they depict the query sentence. We use this
correlation between score and whether a video depicts a
sentence to perform video retrieval. Given a corpus of clips,
we run the sentence tracker with the query sentence on
each clip. Clips are then ranked by their sentence-tracker
score.

The above approach retrieves short clips from a corpus
of such. Our ultimate goal, however, is to take, as input,
videos of arbitrary length and find short clips which
depict the query sentence from these longer videos. The
sentence tracker is able to find a single instance of an
event in a long video because, as shown in Fig. 2, word
meanings have garbage states of unbounded length pre-
pended and appended to them. But this would produce a
single detected event for each long video instead of
potentially many short clips for each input video. To pro-
duce multiple clips, we split all input videos into short,
several-second-long clips and produce a corpus of clips
on which we perform video retrieval. The exact clip
length is unimportant as long as the query sentences can
be fully depicted in the clip length because, as noted
above, the sentence tracker will find shorter events in a
longer clip. This also motivates the use of fixed-length
clips as all words in our chosen lexicon depict short
events. One downside of this is the inability to detect
events that straddle clip boundaries. To address this
problem, we segment input videos into short but overlap-
ping clips, ensuring that each clip boundary is contained
within another clip.

Given the corpus of clips to be searched, the other piece
of information required is the query sentence. The sentence

Fig. 4. Different sentential queries lead to different cross products. The
sentence is parsed and the role of each participant, show in red, is deter-
mined. A single tracker lattice is constructed for each participant. Words
and lexicalized phrases, shown in blue, have associated word lattices
which encode their semantics. The arrows between words and partici-
pants represent the track-to-role mappings, u, required to link the tracker
and word lattices in a way that faithfully encodes the sentential seman-
tics. Some words, like determiners, shown in grey, have no semantics
beyond determining the parse tree and track-to-role mapping. The
dashed lines indicate that the argument order is essential for words
which have more than one role. In other words, predicates like rode and
away from are not symmetric. Detection sources are shown in black, in
this case two object detectors. The tracker associated with each partici-
pant has access to all detection sources, hence the bipartite clique
between the trackers and the detection sources.
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is first parsed according to the grammar shown in Fig. 5.
The grammar presented is context-free and the sentence is
parsed using a standard recursive-descent parser. Note that
the grammar presented here is infinitely recursive. Noun
phrases optionally contain prepositional phrases which con-
tain other noun phrases. For example one might say: The
person to the left of the horse to the right of the person to the left of
the horse .... The words shown in Fig. 2 require arguments
and each of these arguments has one of five thematic roles:
agent, patient, referent, source, and goal. The parse tree,
together with the role information, are used to determine
the number of participants and which participants fill which
roles in the event described by the sentence. This provides
the track-to-role mapping, u, in Eq. (4).

The above procedure for searching a corpus of clips can
be sped up significantly when searching the same corpus
with multiple sentential queries. First, the object detections
required for the sentence tracker are independent of the
query sentence. In other words, the object detector portion
of the lattice, namely the score, position, and optical flow
for each detection, are unaffected by the query even though
the tracks produced are affected by it. This can be seen in
Eq. (4) where neither f (the detection score), g (the motion
coherence), nor either of their arguments depend on the
(words in the) sentence. This allows us to preprocess the
video corpus and compute object detections and optical-
flow estimates which can be reused with different queries.
This constitutes the majority of the runtime of the algorithm;
object detection and optical-flow estimation are an order
of magnitude slower than parsing and sentence-tracker
inference.

The first speedup addressed how to decrease the compu-
tation for each clip in the corpus. The second addresses the
fact that the resulting retrieval algorithm still requires
inspecting every clip in the corpus to determine if it depicts
the query sentence. We ameliorate this problem by first not-
ing that the lexicon and grammar presented in Figs. 2 and 5
have no negation. This means that in order for a video to
depict a sentence it must also depict any fragment of that
sentence. By sentence fragment, we mean any subsequence
of a word string that can be generated by any terminal or
nonterminal in the grammar. For example, the sentence The
person approached the horse quickly has sentence fragments
person, horse, The person approached the horse, and The person
quickly. Any video depicting this entire sentence must also
depict these fragments. Were our grammar to have nega-
tion, this would not be true; a video depicting the sentence
The person did not approach the horse would not depict the
fragment The person approached the horse. This leads to an effi-
cient algorithm for reusing earlier queries to speed up novel
queries. Intuitively, if you’ve already determined that noth-
ing approaches a horse in a clip, nothing will approach a

horse quickly in that clip. In other words, one can parse the
query sentence and look through all previous queries,
potentially queries of sentence fragments, to see which
queries form subtrees of the current query. All clips which
have score �1 for these shorter queries can be eliminated
from consideration when searching for the longer query.
This enables scaling to much larger video corpora by imme-
diately eliminating videos which cannot depict the query
sentence.

7 EXPERIMENTS

We present three experiments which test video retrieval
using sentential queries. All three use the same video cor-
pus but use different query corpora.

7.1 The 10 Westerns Video Corpus

Our video corpus consists of 10 full-length Hollywood mov-
ies, nominally of the genrewesterns. This corpus is very chal-
lenging and demonstrates the ability of our approach to
handle videos found in the wild and not filmed specifically
for this task: Black Beauty (Warner Brothers, 1994), The Black
Stallion (MGM, 1979), Blazing Saddles (Warner Brothers,
1974), Easy Rider (Columbia Pictures, 1969), The Good the
Bad and the Ugly (Columbia Pictures, 1966), Hidalgo
(Touchstone Pictures, 2004), National Velvet (MGM, 1944),
Once Upon a Time inMexico (Columbia Pictures, 2003), Sea-
biscuit (Universal Pictures, 2003), and Unforgiven (Warner
Brothers, 1992). In total, this video corpus has 1,187 minutes
of video, roughly 20 hours. The appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2505297,
specifies the duration and spatial and temporal resolution of
eachmovie.

We temporally downsampled all videos to 6 fps but
kept their original spatial resolutions, splitting them into
37,186 clips, each clip nominally being 18 frames (3 sec-
onds) long, while overlapping the previous clip by six
frames. This overlap ensures that actions that might oth-
erwise occur on clip boundaries will also occur as part
of a clip. While there is prior work on shot segmentation
[39] we did not employ it for two reasons. First, it com-
plicates the system and provides an avenue for addi-
tional failure modes. Second, the approach taken here is
able to find an event inside a longer video with multiple
events. The only reason why we split the videos into
clips is to return multiple hits.

7.2 Query Corpora

We adopt the grammar from Fig. 5. This grammar allows
for queries that describe people interacting with horses,
hence our choice of genre for the video corpus, namely

Fig. 5. The grammar for sentential queries used for the experiments in Section 7.
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westerns. We generated two of the three query corpora from
this grammar. The first consisted of nine SVO queries gener-
ated by the grammar. We omitted the three SVO queries
that involve people riding people, horses riding people, and
horses riding horses. We refer to this collection of nine
queries as the SVO queries. The second consisted of the 204
queries generated by the template included in the appendix,
available in the online supplemental material. This con-
sisted of all queries generated by the grammar in Fig. 5
except those that involve a PP in an NP and further restrict-
ing the lexical PPM to be appropriate for the verb. For this
query corpus we included all queries, including those that
involve people riding people, horses riding people, and
horses riding horses. We refer to this collection of 204
queries as the synthetic queries.

The third collection of queries was elicited from 300 dis-
tinct, disinterested, independent, and anonymous humans
via Amazon Mechanical Turk through a mock up of our sys-
tem, as described in the appendix. We obtained 3,000 unre-
stricted queries, completely unconstrained as to grammar
and lexicon. We discarded 22 blank queries and 351 that
violated the instructions given to workers, as described in
the appendix. We processed all remaining 2,627 queries by
mapping them to synthetic queries using a spelling and
grammar correction process based on Levenshtein distance,
as described in the appendix. We refer to this collection of
2,627 queries as the human queries. The mock up did not
expose this spelling and grammar correction process to the
workers, who simply entered queries, which were recorded,
and obtained search results. We evaluated the truth of the
retrieved results relative to the original human queries, not
their mapping to the synthetic queries.

7.3 Models

A requirement for determining whether a video depicts a
query, and the degree to which it depicts that query, is to
detect the objects that might fill roles in that query. To
ensure that we did not test on the training data, we
employed previously-trained object models that have not
been trained on these videos but have instead been trained
on PASCAL VOC. We use models provided with the soft-
ware release associated with Sadeghi and Forsyth [33]1

which were trained by the UoCTTI_LSVM-MDPM team
(the authors of Felzenszwalb et al. [31], [32]) for the 2009
Challenge. On the 2009 Challenge, the person model
achieves an AP score of 41.5 percent and the horse model
achieves an AP score of 38.0 percent. When running the
object detectors, we set the non-maximal-suppression
parameter to 0.7 and use at most the top 4 detections
returned for each class in each frame.

We also require settings for the nine parameters, shown in
Fig. 1, which are required to produce the predicates which
encode the semantics of the words in this grammar. For this
purpose, we judiciously selected values for these parameters
that are consistent with their intent: far ¼ 180, close ¼ 120,
stationary ¼ 2, Dclosing ¼ 3, Dangle ¼ 45�, Dpp ¼ 50,
Dquickly ¼ 30, Dslowly ¼ 30, and overlap ¼ 0:1. Yu and
Siskind [40] present a strategy for training the parameters of
a lexicon of words given a video corpus.

7.4 Baseline

We compared the performance of the sentence tracker
against a baseline on the SVO queries. We compare against
a baseline only for the SVO queries and not the synthetic
and human queries because we know of no other system
that can support the more complex syntax and ontology in
these query corpora. This baseline employs the same
approach that is used in state-of-the-art video-search sys-
tems in that it searches independently for the subject and
object of an SVO query using object detection and the verb
of an SVO query using event detection. We did not compare
against any particular existing system because, at the time
of submission, there was no system for which end-to-end
code was publicly available.

Our baseline operates as follows. We first apply an object
detector to each frame of every clip to detect people and
horses. For comparison purposes, we employ the same
object detector and pretrained models as used for the
experiments with the sentence tracker, including passing
the raw detector score through the same sigmoid. We rank
the clips by the average score of the top detection in each
frame. If the query sentence contains only the word person,
we rank only by the person detections. If the query sentence
contains only the word horse, we rank only by the horse
detections. If the query sentence contains both the words
person and horse, we rank by the average of the top person
and top horse detection in each frame. We then apply a
binary event detector to eliminate clips from the ranking
that do not depict the event specified by the verb. For this
purpose, we employed one of the highest performing event
detectors for which code was available at the time of sub-
mission, namely that of Kuehne et al. [21]. We train that
detector on 70 positive and 70 negative samples of each
verb and remove those samples from the test set. We then
report the top 1, 3, 5, and 10 ranked clips that satisfy the
event detector and compare those clips against the top 1, 3,
5, and 10 clips produced by our method.

7.5 Evaluation Procedure

For each query, we scored every clip paired with that query
and return the top 1, 3, 5, and 10 best-scoring clips for that
query. Each of these top 10 clips was annotated by a collec-
tion of nominally five distinct, disinterested, independent,
and anonymous humans via Amazon Mechanical Turk.
Each judge was presented with a query and associated hit
and asked: is this query true of this clip? The precise details
of how such assessment was performed are described in the
appendix.

7.6 Results

Our results are summarized in Fig. 6. The left column sum-
marizes the experiments with the SVO queries. Our
approach yields significantly higher precision than the base-
line on the SVO queries. Precision of the sentence tracker on
the SVO queries varies as a function of recall as controlled
by the threshold on the sentence-tracker score. Note that it
is not possible to achieve high recall with our method,
because we employ hard FSMs to model sentential seman-
tics which cannot be overcome by any threshold on sen-
tence-tracker score because such is �1 when the FSM is1. http://vision.cs.uiuc.edu/ftvq/
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violated. Recall is thus limited to about 10�2. Precision is
around 0.3 for most of the attainable recall range. It reaches

a peak of 0.5 when recall is about 2� 10�5. Its lowest value
is 0.125 with a similar recall.

The right three columns summarize the experiments
with the synthetic and human queries in the top and bottom
rows respectively. For the second and third columns, no
threshold on sentence-tracker score was employed; we eval-
uated the top 1, 3, 5, and 10 hits returned. Because of the
stringent FSM model, the sentence tracker can return fewer
than the requisite number of hits, even without a threshold.
Thus the red bars in the second column depict the fraction
of the queries for which at least the indicated number of hits
were returned. Because the human judges were sometimes
divided as to whether the queries were true of the hits, we
classified these hits as correct, ambiguous, or incorrect, as
described in the appendix. The green bars depict the frac-
tion of the queries for which the indicated number of correct
or ambiguous hits were returned, while the blue bars depict
the fraction of the queries for which the indicated number
of correct hits were returned.

The third column depicts the fraction of the queries
that yield at least the indicated fraction of correct hits.
For example, with the synthetic queries, slightly more
than 30 percent of the queries yield 10 percent or more
correct hits in the top 10. As a point of comparison, with
the human queries, slightly more than 55 percent of the
queries yield 10 percent or more correct hits in the top 10.
Note that for much of the range, the precision in the top
hits requested for human queries exceeds that of the syn-
thetic queries.

The fourth column depicts the variation in average preci-
sion as a function of a threshold on the sentence-tracker score.
As the threshold nears zero, the sentence tracker becomes
very precise. As the threshold tends to�1, the average preci-
sion asymptotes. Again note that overall precision for the
human queries is significantly higher than that of the syn-
thetic queries over almost all of the range of thresholds.

We highlight the usefulness of this approach in Fig. 7
where we show one of the top few hits for a variety of differ-
ent synthetic and human queries. Note that two pairs of
similar queries, both The person approached the horse and The
horse approached the person as well as The person approached
the horse slowly from the left and The horse approached the person
slowly from the left, yield different but appropriate results.
With existing systems, both queries in each pair would pro-
vide the same hits as they treat sentences as conjunctions of
words.

8 DISCUSSION

As discussed in Section 1, most previous work falls into
two categories: search by example and attribute-based appr-
oaches. In the former, a sample image or video is provided
and similar images or videos are retrieved. Conventional
event-recognition systems are of this type. They train mod-
els on collections of query clips and find the target clips
which best match the trained model. In the limit, such sys-
tems find the target clips most-similar to a single query clip.
Attribute-based approaches are usually applied to images,
not videos. Such approaches, given a sentence or sentence
fragment, extract the words from that sentence and use
independent word models to score each image or video clip
[41], [42]. Some variants of these approaches, such as that of
Siddiquie et al. [43], learn correlations between multiple fea-
tures and include feature detectors which are not present in
the input query. Some systems present various combina-
tions of the approaches described above, such as those of
Christel et al. [22], Worring et al. [23], and Snoek et al. [24].

None of the above approaches link features in a way that
is informed by sentence structure, hence they are unable to
support sentential queries. What we mean by this is they
cannot show the key difference that we underscore in this
work, the ability to encode the query semantics with enough
fidelity to differentiate between The person rode the horse and
The horse rode the person. The baseline we compare against in

Fig. 6. (Top left) Comparison of average precision in the top 1, 3, 5, and 10 hits, over the SVO queries for both the baseline and the sentence tracker.
(bottom left) Precision/recall curve over the SVO queries for the sentence tracker. Results for synthetic (top row) and human (bottom row) queries in
the top 1, 3, 5, and 10 hits (right three columns). (second column) Fraction of queries with at least the the indicated number of hits, correct or ambigu-
ous hits, and correct hits. (third column) Fraction of queries that have at least the indicated fraction of correct hits. (fourth column) Precision of
returned hits as a function of threshold.
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Section 7.4 was designed to model the predominant current
methodology of modeling queries with no reflection of
argument structure.

In the experiments in Section 7, we report recall only for
the SVO queries. The reason is simple: computing recall
requires determining true negatives which would require
annotating the entire corpus of 37,186 clips with truth val-
ues for all 204 synthetic queries and 2,627 human queries, a
monumental and tedious task. We only annotate the top ten
hits for each of the synthetic and human queries as to their
truth value, allowing us only to report true positives. That
raises a potential question: what is the chance that we may
have missed potential hits for our synthetic and human
queries. We note that movies have very different properties
from surveillance video and standard action-recognition
corpora. Most time is spent showing people engaged in dia-
log rather than performing actions. Thus we contend that

target clips that satisfy complex queries are likely to be few
and far between. Moreover, we contend that chance perfor-
mance on this retrieval task is also very low. This is further
supported by the extreme low performance of the baseline
from Section 7.4. Thus we contend that the underlying
retrieval task is difficult and the performance of our
method, as described in Section 7, is good.

Our work is closest to that of Lin et al. [29]. They are the
only work that we are familiar with that composes the mean-
ing of complex textual video queries out of meanings of con-
stituent words and phrases. Our work is similar to Lin et al.
[29] in that neither learn the grammar, the lexicon, themethod
of mapping parse trees to semantic representations, or the
concept vocabulary encoded in the ontology of predicates. It
is instructive to examine the similarities and differences more
closely. Like our work, they formulate themeaning of a query
as a collection of cost functions applied to object tracks. Each

Fig. 7. Frames from hits returned for several synthetic and human queries. Some clips are returned for multiple queries. As indicated above, these
hits were judged as correct or ambiguous for the associated query by human judges.
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cost function corresponds to some word or phrase in the
query. Each object track corresponds to some noun or noun
phrase in the query. In our notation, they too apply cost
functions hw to object tracks bj as hwðbjÞ and seek tomaximize
the collective costs. But the similarity ends there. First, they
employ solely unary cost functions that apply to a single track.
We support cost functions of arbitrary arity, in particular
binary functions. This allows us to support transitive verbs,
like The person rode the horse, which would be represented as
rodeðperson;horseÞ, and prepositional phrases attached to
either nouns or verbs, like the person to the left of the horse and
The person rode towards the horse, which would be represented
as left-ofðperson;horseÞ and towardsðperson;horseÞ. Han-
dling such with only unary functions would require lexicaliz-
ing one of the arguments with the verb or preposition, as in
rode horse, left of the horse, or towards the horse, which would be
represented as rode-horseðpersonÞ, left-of-horseðpersonÞ,
or towards-horseðpersonÞ. Such would not generalize
because the associate predicates are specialized to specific
incorporated arguments.

Second, they perform object tracking as a preprocessing
step, having each object tracker produce a collection of
candidate tracks which are then evaluated by semantic proc-
essing. Their semantic processing is disjoint from and subse-
quent to object tracking. Their trackers overgenerate and
their semantic processing selects among such overgenerated
tracks. Our approach performs object detection as a prepro-
cessing step, having each object detector produce a collection
of detections in each frame which are evaluated by our joint
tracking and semantic processing step. Our object detectors
overgenerate and our joint tracking and semantic process
selects among such detections and assembles them into
tracks. The difference lies in the fact that an exponential
number of possible tracks can be constructed from a given
number of detections. Our method considers all such and
finds the global optimum in polynomial time. Their method
considers only the tracks produced by preprocessing.

Third, they allow a cost function to be assigned to a
dummy track “no-obj,” effectively removing the cost func-
tion from the semantic representation of the text query.
They do this to support resilience to tracker failures. How-
ever, this allows their system to return hits that match a sub-
set of the cost functions in the query, potentially returning
hits that do not depict the query and for which the query is
semantically false. We avoid the necessity to do so by per-
forming tracking jointly with semantic processing. When
we fail to find a track that satisfies the semantic processing
we refrain from returning the clip as a hit.

Fourth, they allow a given track to be associated with at
most one cost function. They refer to such as “no coreference.”
This means that they would represent The person rode the horse
as rodeðperson;horseÞ where person and horse are not cost
functions but rather filters on potential tracks to consider as
arguments to the cost function rode. We instead represent
this as the aggregation of cost functions personðxÞ, horseðyÞ,
and rodeðx; yÞ. The no-coreference constraint would preclude
such. This further precludes sentences like The person rode the
horse towards the person which would require an aggregation
of personðxÞ, horseðyÞ, personðzÞ, rodeðx; yÞ, and either
towardsðx; zÞ or towardsðy; zÞ. We see no way to represent
suchwithout coreference.

Fifth, their cost functions apply to feature vectors
extracted from entire object tracks. This requires that any
temporal alignment must be performed inside the feature-
extraction process since the temporal nature of the track,
i.e., the sequence of detections, is not exposed to the seman-
tic cost functions. Our cost functions take the form of FSMs
where the output predicates apply to detections in individ-
ual frames, not entire tracks. This allows the FSM to perform
temporal alignment within the semantic processing, not in
the feature-extraction process.

In the future, one can imagine scaling our approach
along a variety of axes: larger, more varied video corpora, a
larger lexicon of nouns, verbs, adjectives, adverbs, and
prepositions, and a more complex query grammar. Let us
consider the advances needed to achieve such.

Scaling the size of the video corpus is easy. For a fixed-
size query language, processing time and space is linear in
the corpus size. Further, such processing is trivially paralle-
lizable and, as discussed in Section 6, many components of
the process, such as object detection, can be precomputed
and cached in a query-independent fashion. Moreover, as
discussed in Section 6, results of earlier queries can be
cached and used to speed up processing of later queries,
potentially leading to reduction of the search complexity
below linear time.

Scaling up to support a larger lexicon of nouns largely
depends on the state-of-the-art in object detection. While
current methods appear to work well only for small num-
bers of object classes, recent work by Dean et al. [44] has
shown that object detection may scale to far larger collec-
tions of objects. Since our method simply requires scored
detections, it can avail itself of any potential future advances
in object detection, including combining the results of multi-
ple detection methods, potentially even for the same object
class as part of the same object track.

Scaling up to support a larger lexicon of verbs also
appears possible. Our approach performs event recognition
on time series of feature vectors extracted from object tracks.
This general approach has already been demonstrated to
scale to 48 distinct event classes [38]. However, this has only
been used for verbs and other parts of speech whose mean-
ings are reflected inmotion profile: the changing relative and
absolute positions, velocities, and accelerations of the event
participants. Scaling beyond this, to encode the meanings of
words like sit, pour, build, or break, or semantic distinctions
like the difference between abandon and leave or between fol-
low and chase, would require modeling facets of perception
and cognition beyond motion profile, such as body posture
[45], functionality, intention, and physical processes.

Our current implementation processes all ten full-length
Hollywood movies with all 204 synthetic queries and all
2,627 human queries with no precomputed information in
about a day on ten workstations. With precomputed object
detections and optical flow, it processes all nine SVO
queries against all ten full-length Hollywood movies in
about a half an hour on ten workstations. One can easily
imagine processing every Hollywood movie ever made on
the computing infrastructure available to an organization
like Google in a few seconds.

Scaling query length and complexity requires lattices of
greater width. The dynamic-programming algorithm which
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performs inference on the sentence-tracker lattice takes time
quadratic in the width of the cross-product lattice. Unfortu-
nately the width of this lattice increases exponentially in the
number of participants and the query length. However, as
our corpus of human queries shows, people rarely enter
long queries with a large number of participants. Scaling
beyond our current capacity will require either a faster
dynamic-programming algorithm or inexact inference.
Barbu et al. [37] present an algorithm which employs
Felzenszwalb and Huttenlocher’s [46] generalized distance
transform to perform inference in linear time in the lattice
width, as opposed to quadratic time, for a one-word sen-
tence tracker. Such an approach can be generalized to an
entire sentence tracker but carries the added weight of
restricting the form of the features used when formulating
the per-state predicates in the event model. At present, the
constant-factor overhead of this approach outweighs the
reduced asymptotic complexity, but this may change with
increased query complexity. Alternatively, one might per-
form inexact inference using beam search to eliminate low-
scoring lattice regions. Inexact inference might also employ
sampling methods such as MCMC. Lazy Viterbi [47] offers
another alternative which maintains the optimality of the
algorithm but only visits nodes in the lattice as needed.

9 CONCLUSION

We have developed an approach to video searchwhich takes
as input a video corpus and a sentential query. It generates a
list of results ranked by how well they depict the query sen-
tence. This approach provides two largely novel video-
search capabilities. First, it can encode the semantics of sen-
tences compositionally, allowing it to express subtle distinc-
tions such as the difference between The person rode the horse
and The horse rode the person. Such encoding allows it to find
depictions of novel sentences which have never been seen
before. Second, it extends video search past nouns and verbs
allowing sentences which can encode modifiers such as
adverbs and entire prepositional phrases. Unlike most other
approaches which allow for textual queries of images or vid-
eos, we do not require any prior video annotation. We have
evaluated this approach on a large video corpus of 10 full-
length Hollywood movies, comprising roughly 20 hours of
video, by running 2,627 naturally elicited queries.
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