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Abstract

We present an approach to searching large video corpora
for video clips which depict a natural-language query in the
form of a sentence. This approach uses compositional seman-
tics to encode subtle meaning that is lost in other systems,
such as the difference between two sentences which have
identical words but entirely different meaning: The person
rode the horse vs. The horse rode the person. Given a video-
sentence pair and a natural-language parser, along with
a grammar that describes the space of sentential queries,
we produce a score which indicates how well the video de-
picts the sentence. We produce such a score for each video
clip in a corpus and return a ranked list of clips. Further-
more, this approach addresses two fundamental problems
simultaneously: detecting and tracking objects, and recog-
nizing whether those tracks depict the query. Because both
tracking and object detection are unreliable, this uses knowl-
edge about the intended sentential query to focus the tracker
on the relevant participants and ensures that the resulting
tracks are described by the sentential query. While earlier
work was limited to single-word queries which correspond
to either verbs or nouns, we show how one can search for
complex queries which contain multiple phrases, such as
prepositional phrases, and modifiers, such as adverbs. We
demonstrate this approach by searching for 141 queries in-
volving people and horses interacting with each other in 10
full-length Hollywood movies.

1. Introduction
Video search engines lag behind text search engines in

their wide use and performance. This is in part because the
most attractive interface for finding videos remains a natural-
language query in the form of a sentence but determining if
a sentence describes a video remains a difficult task. This
task is difficult for a number of different reasons: unreliable
object detectors which are required to determine if nouns
occur, unreliable event recognizers which are required to
determine if verbs occur, the need to recognize other parts
of speech such as adverbs or adjectives, and the need for
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a representation of the semantics of a sentence which can
faithfully encode the desired natural-language query. We
propose an approach which simultaneously addresses all of
these problems. Systems to date generally attempt to inde-
pendently address the various aspects that make this task
difficult. For example, they attempt to separately find videos
that depict nouns and videos that depict verbs and essentially
take the intersection of the two sets of videos. This general
approach of solving these problems piecemeal cannot rep-
resent crucial distinctions between otherwise similar input
queries. For example, if you search for The person rode the
horse and for The horse rode the person, existing systems
would give the same result for both queries as they each
contain the same words, but clearly the desired output for
these two queries is very different. We develop a holistic ap-
proach which both combines tracking and word recognition
to address the problems of unreliable object detectors and
trackers and at the same time uses compositional semantics
to construct the meaning of a sentence from the meaning
of its words in order to make crucial but otherwise subtle
distinctions between otherwise similar sentences. Given a
grammar and an input sentence, we parse that sentence and,
for each video clip in a corpus, we simultaneously track all
objects that the sentence refers to and enforce that all tracks
must be described by the target sentence using an approach
called the sentence tracker. Each video is scored by the
quality of its tracks, which are guaranteed by construction to
depict our target sentence, and the final score correlates with
our confidence that the resulting tracks correspond to real
objects in the video. We produce a score for every video-
sentence pair and return multiple video hits ordered by their
scores.

Hu et al. [12] note that recent work on semantic video
search focuses on detecting nouns, detecting verbs, or using
language to search already-existing video annotation. Work
that detects objects does not employ object detectors, but
instead relies on statistical features to cluster videos with sim-
ilar objects. Sivic and Zisserman [14] extract local features
from a positive example of an object to find key frames that
contain the same object. Anjulan and Canagarajah [1] track
stable image patches to extract object tracks over the dura-
tion of a video and group similar tracks into object classes.
Without employing an object detector, these methods cannot
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search a collection of videos for a particular object class but
instead must search by example.

Prior work on verb detection does not integrate with work
on object detection. Chang et al. [5] find one of four different
highlights in basketball games using hidden Markov models
and the expected structure of a basketball game. It does not
detect objects but instead classifies entire presegmented clips,
is restricted to a small number of domain-specific actions,
and supports only single-word queries. Yu et al. [21] track
one object, a soccer ball, and detect actions being performed
on that object during a match by the position and velocity
of the object. It supports a small number of domain-specific
actions and is limited to a single object. In summary, the
above approaches only allow for searching for a single word,
a verb, and are domain-specific.

Prior work on more complex queries involving both nouns
and verbs essentially encodes the meaning of a sentence as a
conjunction of words, discarding the semantics of the sen-
tence. Christel et al. [6], Worring et al. [18], and Snoek
et al. [15] present various combinations of text search, verb
retrieval, and noun retrieval, and essentially allow for find-
ing videos which are at the intersection of multiple search
mechanisms. Aytar et al. [2] rely on annotating a video
corpus with sentences that describe each video in that cor-
pus. They employ text-based search methods which given
a query, a conjunction of words, attempt to find videos of
similar concepts as defined by the combination of an ontol-
ogy and statistical features of the videos. Their model for
a sentence is a conjunction of words where higher-scoring
videos more faithfully depict each individual word but the
relationship between words is lost. None of these methods
attempt to faithfully encode the semantics of a sentence and
none of them can encode the distinction between The person
hit the ball and The ball hit the person.

In what follows, we describe a system, which unlike pre-
vious approaches, allows for a natural-language query of
video corpora which have no human-provided annotation.
Given a sentence and a video corpus, it retrieves a ranked
list of videos which are described by that sentence. We show
a method of constructing a lexicon with a small number of
parameters, which are reused among multiple words, mak-
ing training those parameters easy and ensuring the system
need not be shown positive examples of every word in the
lexicon. We present a novel way to combine the semantics
of words into the semantics of sentences and to combine
sentence recognition with object tracking in order to score a
video-sentence pair. To demonstrate this approach, we run
141 natural-language queries of a corpus of 10 full-length
Hollywood movies using a grammar which includes nouns,
verbs, adverbs, and spatial-relation and motion prepositions.
This is the first approach which can search for complex
queries which include multiple phrases, such as preposi-
tional phrases, and modifiers, such as adverbs.

2. Tracking
To search for videos which depict a sentence, we must

first track objects that participate in the event described by
that sentence. Tracks consist of a single detection per frame
per object. To recover these tracks, we employ detection-
based tracking. An object detector is run on every frame of a
video producing a set of axis-aligned rectangles along with
scores which correspond to the strength of each detection.
We employ the Felzenszwalb et al. [10, 11] object detector,
specifically the variant developed by Song et al. [16]. There
are two reasons why we need a tracker and cannot just take
the top-scoring detection in every frame. First, there may
be multiple instances of the same object in the field of view.
Second, object detectors are extremely unreliable. Even on
standard benchmarks, such as the PASCAL Visual Object
Classes (VOC) Challenge, even the best detectors for the
easiest-to-detect object classes achieve average-precision
scores of 40% to 50% [9]. We overcome both of these prob-
lems by integrating the intra-frame information available
from the object detector with inter-frame information com-
puted from optical flow.

We expect that the motion of correct tracks agrees with
the motion of the objects in the video which we can compute
separately and independently of any detections using optical
flow. We call this quantity the motion coherence of a track.
In other words, given a detection corresponding to an object
in the video, we compute the average optical flow inside that
detection and forward-project the detection along that vector,
and expect to find a strong detection in the next frame at that
location. We formalize this intuition into an algorithm which
finds an optimal track given a set of detections in each frame.
Each detection j has an associated axis-aligned rectangle btj
and score f(btj) and each pair of detections has an associated
temporal coherence score g(bt−1jt−1 , b

t
jt) where t is the index

of the current frame in a video of length T . We formulate
the score of a track j = 〈j1, . . . , jT 〉 as

max
j1,...,jT

T∑
t=1

f(btjt) +
T∑

t=2

g(bt−1jt−1 , b
t
jt) (1)

where we take g, the motion coherence, to be a function of
the squared Euclidean distance between the center of bt−1jt−1

and the center of btjt projected one frame forward. While
the number of possible tracks is exponential in the number
of frames in the video, Eq. 1 can be maximized in time
linear in the number of frames and quadratic in the number
of detections per frame using dynamic programming, the
Viterbi [17] algorithm.

The development of this tracker follows that of Barbu
et al. [3] which presents additional details of such a tracker,
including an extension which allows it to generate multiple
tracks per object class by non-maxima suppression. The
tracker employed here has a number of differences from that



of Barbu et al. [3]. While that tracker used the raw detection
scores from the Felzenszwalb et al. [10, 11] detector, these
scores are difficult to interpret because the mean score and
variance varies by object class making it difficult to decide
whether a detection is strong. To get around this problem, we
pass all detections through a sigmoid 1

1+exp(−b(t−a)) whose
center, a, is the model threshold and whose scaling factor
b, is 2. This normalizes the score to the range [0, 1] and
makes scores more comparable across models. In addition,
the motion coherence score is also passed through a similar
sigmoid, with center 50 and scale −1/11.

3. Word recognition

Given tracks, we want to decide if a word describes one
or more of those tracks. This is a generalization of event
recognition, generalizing the notion of an event from verbs
to other parts of speech. To recognize if a word describes a
collection of tracks, we extract features from those tracks and
use those features to formulate the semantics of words. Word
semantics are formulated in terms of finite state machines
(FSMs) which accept one or more tracks. Fig. 2 provides an
overview of all FSMs used in this paper, rendered as regular
expressions along with their semantics. This approach is a
limiting case of that taken by Barbu et al. [4] which used
hidden Markov models (HMMs) to encode the semantics of
words. In essence, our FSMs are unnormalized HMMs with
binary transition matrices and binary output distributions.
This allows the same recognition mechanism as that used by
Barbu et al. [4] to be employed here.

We construct word meaning in two levels. First, we con-
struct 18 predicates, shown in Fig. 1, which accept one or
more detections. We then construct word meanings for our
lexicon of 15 words, shown in Fig. 2, as regular expres-
sions which accept tracks and are composed out of these
predicates. The reason for this two-level construction is to
allow for sharing of low-level features and parameters. All
words share the same predicates which are encoded relative
to 9 parameters: far, close, stationary, ∆closing, ∆angle,
∆pp, ∆quickly, ∆slowly, and overlap. These parameters
are learned from a small number of positive and negative
examples that cover only a small number of words in the
lexicon. To make predicates independent of the video res-
olution, detections are first rescaled relative to a standard
resolution of 1280× 720, otherwise parameters such as far
would vary with the resolution.

Given a regular expression for a word, we can construct
a non-deterministic FSM, with one accepting state, whose
allowable transitions are encoded by a binary transition ma-
trix h, giving score zero to allowed transitions and −∞ to
disallowed transitions, and whose states accept detections
which agree with the predicate a, again with the same score
of zero or −∞. With this FSM, we can recognize if a word

describes a track 〈̂1, . . . , ̂T 〉, by finding

max
k1,...,kT

T∑
t=1

h(kt, bt̂t) +

T∑
t=2

a(kt−1, kt)

where k1 through kT−1 range over the set of states of the
FSM and kT is the singleton set containing the accepting
state. If this word describes the track, the score will be zero.
If it does not, the score will be −∞. The above formulation
is trivially generalized to multiple tracks and is the same
as that used by Barbu et al. [3]. We find accepting paths
through the lattice of states using dynamic programming, the
Viterbi algorithm. Note that this method can be applied to
encode not just the meaning of verbs but also of other parts
of speech, for example the meaning of left-of. We will avail
ourselves of the ability to encode the meaning of all parts of
speech into a uniform representation in order to build up the
semantics of sentences from the semantics of words.

4. Sentence tracker

Our ultimate goal is to search for videos given a natural-
language query in the form of a sentence. The framework
developed so far falls short of supporting this goal in two
ways. First, as we attempt to recognize multiple words that
constrain a single track, it becomes unlikely that the tracker
will happen to produce an optimal track which satisfies all
the desired predicates. For example, we want a person that is
both running and doing so leftward. Second, a sentence is not
a conjunction of words, even though a word is represented
here as a conjunction of features, so a new mechanism is
required to faithfully encode the semantics of a sentence.
Intuitively, we need a way to encode the mutual dependence
in the sentence The tall person rode the horse so that the
person is tall, not the horse, and the person is riding the
horse, not vice versa.

We address the first point by biasing the tracker to pro-
duce tracks which agree with the predicates that are being
enforced. This may result in the tracker producing tracks
which have to consist of lower-scoring detections, which
decreases the probability that these tracks correspond to
real objects in the video, This is not a concern as we will
present the users with results ranked by their tracker score.
In essence, we pay a penalty for forcing a track to agree with
the enforced predicates and the ultimate rank order is influ-
enced by this penalty. The computational mechanism that
enables this exists by virtue of the fact that our tracker and
word recognizer have the same internal representation and
algorithm, namely, each finds optimal paths through a lat-
tice of detections and states, respectively, and each weights
the links in that lattice by a score, the motion coherence
and state-transition score, respectively. We simultaneously
find the optimal, highest-scoring, track j1, . . . , jT and state



FAR(a, b)
4
= |acx − bcx| − awidth

2 − bwidth
2 > far

REALLY-CLOSE(a, b)
4
= |acx − bcx| − awidth

2 − bwidth
2 > close

2

CLOSE(a, b)
4
= |acx − bcx| − awidth

2 − bwidth
2 > close

2

STATIONARY(b)
4
= flow-magnitude(b) ≤ stationary

CLOSING(a, b)
4
= |acx − bcx| > |project(a)cx − project(b)cx|+ ∆closing

DEPARTING(a, b)
4
= |acx − bcx| < |project(a)cx − project(b)cx|+ ∆closing

MOVING-DIRECTION(a, b, α)
4
= |flow-orientation(a)− α|◦ < ∆angle ∧

flow-magnitude(a) > stationary
LEFT-OF(a, b)

4
= acx < bcx + ∆pp

RIGHT-OF(a, b)
4
= acx > bcx + ∆pp

LEFTWARD(a, b)
4
= MOVING-DIRECTION(a, b, 0)

LEFTWARD(a, b)
4
= MOVING-DIRECTION(a, b, π)

STATIONARY-BUT-FAR(a, b)
4
= FAR(a, b) ∧ STATIONARY(a) ∧ STATIONARY(b)

STATIONARY-BUT-CLOSE(a, b)
4
= CLOSE(a, b) ∧ STATIONARY(a) ∧ STATIONARY(b)

MOVING-TOGETHER(a, b)
4
= |flow-orientation(a)− flow-orientation(b)|◦ < ∆angle ∧

flow-magnitude(a) > stationary ∧
flow-magnitude(b) > stationary

APPROACHING(a, b)
4
= CLOSING(a, b) ∧ STATIONARY(b)

QUICKLY(a)
4
= flow-magnitude(a) > ∆quickly

SLOWLY(a)
4
= stationary < flow-magnitude(a) < ∆slowly

OVERLAPPING(a, b)
4
= a∩b

a∪b ≥ overlap

Figure 1. Predicates which accept detections, denoted by a and b, formulated around 9 parameters. The function project projects a detection
forward one frame using optical flow. The functions flow-orientation and flow-magnitude compute the angle and magnitude of the average
optical-flow vector inside a detection. The function acx accesses the x coordinate of the center of a detection. The function awidth computes
the width of a detection. The functions ∪ and ∩ compute the area of the union and intersection of two detections respectively. The function
|·|◦ computes angular separation. Words are formed as regular expressions over these predicates.

horse(a)
4
= (aobject-class = “horse′′)+

person(a)
4
= (aobject-class = “person′′)+

quickly(a)
4
= true+ QUICKLY(a){3,} true+

slowly(a)
4
= true+ SLOWLY(a){3,} true+

from the left(a, b)
4
= true+ LEFT-OF(a, b){5,} true+

from the right(a, b)
4
= true+ RIGHT-OF(a, b){5,} true+

leftward(a)
4
= true+ LEFTWARD(a){5,} true+

rightward(a)
4
= true+ RIGHTWARD(a){5,} true+

to the left of(a, b)
4
= true+ LEFT-OF(a, b){3,} true+

to the right of(a, b)
4
= true+ RIGHT-OF(a, b){3,} true+

towards(a, b)
4
= STATIONARY-BUT-FAR(a, b)+ APPROACHING(a, b){3,}

STATIONARY-BUT-CLOSE(a, b)+

away from(a, b)
4
= STATIONARY-BUT-CLOSE(a, b)+ DEPARTING(a, b){3,}

STATIONARY-BUT-FAR(a, b)+

ride(a, b)
4
= true+ (MOVING-TOGETHER(a, b) ∧ OVERLAPPING(a, b)){5,} true+

lead(a, b)
4
= true+


¬REALLY-CLOSE(a, b) ∧
MOVING-TOGETHER(a, b) ∧(

(LEFT-OF(a, b) ∧ LEFTWARD(a)) ∨
(RIGHT-OF(a, b) ∧ RIGHTWARD(a))

)

{5,}

true+

approach(a, b)
4
= true+ APPROACHING(a, b){5,} true+

Figure 2. Regular expressions which encode the meanings of each of the 15 words or lexicalized phrases in the lexicon. These are composed
from the predicates shown in Fig. 1. We use an extended regular-expression syntax where an exponent of {t, } allows a predicate to hold
for t or more frames.

sequence k1, . . . , kT as

max
j1,...,jT

max
k1,...,kT

(
T∑

t=1

f(btjt) +

T∑
t=2

g(bt−1jt−1 , b
t
jt)+

T∑
t=1

h(kt, btjt) +

T∑
t=2

a(kt−1, kt)

)
(2)

which ensures that, unless the state sequence for the word
FSM leads to an accepting state, the resulting score will be

−∞ and thereby constrains the tracks to depict the word.
Intuitively, we have two lattices, a tracker lattice and a word-
recognizer lattice, and we find the optimal path, again with
the Viterbi algorithm, through a cross-product lattice.

The above handles only a single word, but given a sen-
tential query we want to encode its semantics in terms of
multiple words and multiple trackers. We parse an input
sentence with a grammar, shown in Fig. 4, and extract the
number of participants and the track-to-role mapping. Each



sentence has a number of thematic roles that must be filled
by participants in order for the sentence to be syntactically
valid. For example, in the sentence The person rode the
horse quickly away from the other horse, there are three par-
ticipants, one person and two horses, and each of the three
participants plays a different role in the sentence, agent, pa-
tient, and goal. Each word in this sentence refers to a subset
of these three different participants, as shown in Fig. 3(right),
and words that refer to multiple participants, such as ride,
must be assigned participants in the correct order to ensure
that we encode The person rode the horse rather than The
horse rode the person. We use a custom natural-language
parser which takes as input a grammar, along with the arity
and thematic roles of each word, and computes a track-to-
role mapping: which participants fill which roles in which
words. We employ the same mechanism as described above
for simultaneous word recognition and tracking, except that
we instantiate one tracker for each participant and one word
recognizer for each word. The thematic roles, θnw, map the
nth role in a word w to a tracker. Fig. 3(right) displays an
overview of this mapping for a sample sentence. Trackers
are shown in red, word recognizers are shown in blue, and
the track-to-role mapping is shown using the arrows. Given a
sentential query that has W words, L participants, and track-
to-role mapping θnw, we find a collection of optimal tracks
〈j11 , . . . , jT1 〉 · · · 〈j1L, . . . , jTL 〉, one for each participant, and
accepting state sequences 〈k11, . . . , kT1 〉 · · · 〈k1W , . . . , kTW 〉,
one for each word, as

max
j11 ,...,j

T
1

...
j1L,...,j

T
L

max
k1
1,...,k

T
1

...
k1
W ,...,kTW

(
L∑

l=1

T∑
t=1

f(btjtl
) +

T∑
t=2

g(bt−1
jt−1
l

, btjtl
)+

W∑
w=1

T∑
t=1

hw(ktw, b
t
jt
θ1w

, btjt
θ2w

) +

T∑
t=2

aw(kt−1w , ktw)

)
(3)

where aw and hw are the transition matrices and predicates
for word w, btjtl is a detection in the tth frame of the lth
track, and btjt

θnw

connects a participant that fills the nth role in

word w with the detections of its tracker. This equation max-
imizes the tracker score for each tracker corresponding to
each participant, and ensures that each word has a sequence
of accepting states, if such a sequence exists, otherwise the
entire sentence-tracker score will be −∞. In essence, we
are taking cross products of tracker lattices and word lattices
while ensuring that the sequence of cross products agrees
with our track-to-role mapping and finding the optimal path
through the resulting lattice. This allows us to employ the
same computational mechanism, the Viterbi algorithm, to
find this optimal node sequence. The resulting tracks will
satisfy the semantics of the input sentence, even if this means
paying a penalty by having to choose lower-scoring detec-
tions.

5. Results
We have so far developed a system which scores a video-

sentence pair telling us how well a video depicts a sentence.
Given a sentential query, we run the sentence tracker on
every video in a corpus and return all results ranked by
their scores. The better the score the more confident we
are that the resulting tracks correspond to real objects in
the video while the sentence tracker itself ensures that all
tracks produced satisfy the sentential query. To save on
redundant computation, we cache the object-detector results
for each video as the detection scores are independent of the
sentential query.

To demonstrate this approach to video search, we ran
sentential queries over a corpus of 10 Hollywood westerns:
Black Beauty (Warner Brothers, 1994), The Black Stallion
(MGM, 1979), Blazing Saddles (Warner Brothers, 1974),
Easy Rider (Columbia Pictures, 1969), The Good the Bad
and the Ugly (Columbia Pictures, 1966), Hidalgo (Touch-
stone Pictures, 2004), National Velvet (MGM, 1944), Once
Upon a Time in Mexico (Columbia Pictures, 2003), Seabis-
cuit (Universal Pictures, 2003), and Unforgiven (Warner
Brothers, 1992). In total, this video corpus has 1187 minutes
of video, roughly 20 hours. We temporally downsample
all videos to 6 frames per second but keep their original
spatial resolutions which varied from 336 × 256 pixels to
1280× 544 pixels with a mean resolution of 659.2× 332.8
pixels. We split these videos into 37187 clips, each clip be-
ing 18 frames (3 seconds) long, which overlaps the previous
clip by 6 frames. This overlap ensures that actions that might
otherwise occur on clip boundaries will also occur as part of
a clip. While there is prior work on shot segmentation [7]
we do not employ it for two reasons. First, it complicates the
system and provides an avenue for additional failure modes.
Second, the approach taken here is able to find an event
inside a longer video with multiple events. The only reason
why we split up the videos into clips is to return multiple
such events.

We adopt the grammar from Fig. 4 which allows for sen-
tences that describe people interacting with horses, hence
our choice of genre for the video corpus, namely westerns.
A requirement for determining whether a video depicts a
sentence and the degree to which it depicts that sentence
is to detect the objects that might fill roles in that sentence.
Previous work has shown that people and horses are among
the easiest-to-detect objects, although the performance of
object detectors, even for these classes, remains extremely
low. To ensure that we are not testing on the training data, we
employ previously-trained object models that have not been
trained on these videos but have instead been trained on the
PASCAL VOC Challenge [9]. We also require settings for
the 9 parameters, shown in Fig. 1, which are required to pro-
duce the predicates which encode the semantics of the words
in this grammar. We train all 9 parameters simultaneously
on only 3 positive examples and 3 negative examples. Note
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track 1 track L

The tall person rode the horse quickly leftward away from the other horse

agent-track patient-track source-track

Figure 3. (left) Tracker lattices are used to produce tracks for each the object. Word lattices constructed from word FSMs recognize one or
more tracks. We take the cross product of multiple tracker lattices and word lattices to simultaneously track objects and recognize words. By
construction, this ensures that the resulting tracks are described by the desired words. (right) Different sentential queries lead to different
cross products. The sentence is parsed and the role of each participant, show in red, is determined. A single tracker lattice is constructed for
each participant. Words and lexicalized phrases, shown in blue, have associated word lattices which encode their semantics. The arrows
between words and participants represent the track-to-role mappings, θ, required to link the tracker and word lattices in a way that faithfully
encodes the sentential semantics. Some words, like determiners, shown in grey, have no semantics beyond determining the parse tree and
track-to-role mapping. The dashed lines indicate that the argument order is essential for words which have more than one role.

S → NP VP NP → D N [PP]
D → the N → person | horse
PP → P NP P → to the left of | to the right of
VP → V NP [Adv] [PPM] V → lead | rode | approached
Adv → quickly | slowly PPM → PM NP | from the left | from the right
PM → towards | away from

Figure 4. The grammar for sentential queries used in the experiment section.

that these training examples cover only a subset of the words
in the grammar but are sufficient to define the semantics
of all words because this word subset touches upon all the
underlying parameters. Training proceeds by exhaustively
searching a small uniform grid, with between 3 and 10 steps
per dimension, of all nine parameter settings to find a combi-
nation which best classifies all 6 training samples which are
then removed from the test set. Yu and Siskind [20] present
a related alternative strategy for training the parameters of a
lexicon of words given a video corpus.

We generated 204 sentences that conform to the grammar
in Fig. 4 from the template shown in Fig. 5. We eliminate
the 63 queries that involve people riding people and horses
riding people or other horses, as our video corpus has no
positive examples for these sentences. This leaves us with
141 queries which conform to our grammar. For each sen-
tence, we score every video-sentence pair and return the
top 10 best-scoring clips for that sentence. Each of these
top 10 clips was annotated by a human judge with a binary
decision: is this sentence true of this clip? In Fig. 7(a), we
show the precision of the system on the top 10 queries as
a function of a threshold on the scores. As the threshold
nears zero, the system may return fewer than 10 results per
sentence because it eliminates query results which are un-
likely to be true positives. As the threshold tends to −∞,
the average precision across all top 10 clips for all sentences
is 22.9%, and at its peak, the average precision is 72.4%.
In Fig. 7(b), we show the number of results returned per
sentence, eliminating those results which have a score of
−∞ since that tells us no tracks could be found which agree

with the semantics of the sentence, On average, there are
7.96 hits per sentence, with standard deviation 3.61, and with
only 14 sentences having no hits. In Fig. 7(c), we show the
number of correct his per sentence. On average, there are
1.83 correct hits per sentence, with standard deviation 2.26,
and with 80 sentences having at least one true positive.

We highlight the usefulness of this approach in Fig. 8
where we show the top 6 hits for two similar queries: The
person approaches the horse and The horse approached the
person. Hits are presented in order of score, with the highest
scoring hit in the top left-hand corner and scores decreasing
as one moves to the right and to the next line. Note how the
results for the two sentences are very different from each
other and each sentence has 3 true positives and 3 false pos-
itives.1 With existing systems, both queries would provide
the same hits as they treat the sentences as conjunctions of
words.

We compare our results against a baseline method that
employs the same approach that is used in state-of-the-art
video-search systems. We do not compare against any par-
ticular existing system because no current system employs
state-of-the-art object or event detectors and thus any such
system would be severely handicapped in its inability to
reliably detect people, horses, and the particular events we
search for. Our baseline operates as follows. We first apply
an object detector to each frame of every clip to detect people
and horses. For comparison purposes, we employ the same

1It can be difficult to distinguish true positives and false positives from
just a pair of frames, so we have included the full videos in the supplemen-
tary material along with additional results.



X {approached Y {,quickly,slowly} {,from the left,from the right},
{lead,rode} Y {,quickly,slowly} {,leftward,rightward, {towards,away from} Z}}

Figure 5. The template used to generate the 141 query sentences where X, Y, and Z are either person or horse. The template generates 204
sentences out of which 63 are removed because they involve people riding people and horses riding people or other horses for which no true
positives exist in our video corpus.

object detector and pretrained models as used for the earlier
experiment, including passing the raw detector score through
the same sigmoid. We rank the clips by the average score
of the top detection in each frame. If the query sentence
contains only the word person, we rank only by the person
detections. If the query sentence contains only the word
horse, we rank only by the horse detections. If the query sen-
tence contains both the words person and horse, we rank by
the average of the top person and top horse detection in each
frame. We then apply a binary event detector to eliminate
clips from the ranking that do not depict the event specified
by the entire query sentence. For this purpose, we employ
a state-of-the-art event detector, namely that of Kuehne et
al. [13]. We train that detector on six samples of each entire
query sentence and remove those samples from the test set.
We then report the top 10 ranked clips that satisfy the event
detector and compare those clips against the top 10 clips
produced by our method.

We compared our system against this baseline on three
different sentential queries: The person rode the horse, The
person lead the horse, and The person approached the horse.
The results are summarized in Fig. 6. Note that our approach
yields significantly higher precision on each of the queries
as well as higher overall average precision. Further note that
this baseline system was trained on a total of 18 training
samples: six samples for each of three query sentences In
contrast, our method was trained on a total six training sam-
ples. Not only was our method trained on one third as many
training samples, our method can support all 141 distinct
queries with its training set, while the baseline only supports
three queries with its training set.

6. Conclusion
We have developed a framework for a novel kind of video

search that takes, as input, natural-language queries in the
form of sentences, along with a video corpus, and generates
a list of ranked results. This approach provides two novel
video-search capabilities. First, it can encode the semantics
of sentences compositionally, allowing it to express subtle
distinctions such as the difference between The person rode
the horse and The horse rode the person. Second, it can
also encode structures more complex than just nouns and
verbs, such as modifiers, e.g. adverbs, and entire phrases,
e.g. prepositional phrases. We do not require any prior video
annotation. The entire lexicon shares a small number of
parameters and, unlike previous work, this approach does not
need to be trained on every word or even every related word.
We have evaluated this approach on a large video corpus

of 10 Hollywood movies, comprising roughly 20 hours of
video, by running 141 sentential queries and annotating the
top 10 results for each query.
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